


Lecture Notes in Computer Science 4010
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Steve Dunne Bill Stoddart (Eds.)

Unifying
Theories of
Programming

First International Symposium, UTP 2006
Walworth Castle, County Durham, UK
February 5-7, 2006
Revised Selected Papers

13



Volume Editors

Steve Dunne
Bill Stoddart
University of Teesside
School of Computing
Borough Road, Middlesbrough, TS1 3BA, UK
E-mail: {s.e.dunne,w.j.stoddart}@tees.ac.uk

The cover illustration represents Walworth Castle, County Durham, UK

Library of Congress Control Number: 2006926663

CR Subject Classification (1998): F.1, D.3, D.1, D.2, D.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-34750-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-34750-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11768173 06/3142 5 4 3 2 1 0



Preface

A number of formal notations and theories have now emerged and proved them-
selves effective as tools for the practising software engineer. Within these theories
we see a number of common themes, such as abstraction, refinement, choice, ter-
mination, feasibility, concurrency and communication. The commonality of such
themes opens perspectives for unifying theories, an activity which can increase
our ability to use existing methods and notations, to recognise their limitations,
and to extend and generalise them. Based on the pioneering work on unifying
theories of programming of Tony Hoare and He Jifeng, which itself acknowl-
edges the influence of Eric Hehner’s seminal ideas on predicative programming,
the aims of this first UTP symposium are to reaffirm the significance of the
ongoing UTP project, to encourage efforts to advance it by providing a focus
for the sharing of results by those already actively contributing, and to raise
awareness of the benefits of unifying theoretical frameworks among the wider
computer science and software engineering communities.

We are extremely fortunate in having secured the participation of such a
formidable panel of invited speakers as Ian Hayes, He Jifeng, Rick Hehner,
Tony Hoare, Jeff Sanders and Jim Woodcock, who truly comprise the leading
lights in the development and ongoing exploitation of the unifying theories of
programming.

I’m pleased to express my appreciation for the sterling efforts of all members
of the UTP 2006 programme committee, and also those of the additional review-
ers, in reviewing all the submitted papers so conscientiously. I must express my
particular appreciation to my Teesside colleagues Bill Stoddart and Frank Zeyda
who supported me unfailingly in my role as Program Chair in many practical
ways. Indeed, Frank’s technical prowess in developing and maintaining the sym-
posium’s various websites proved absolutely invaluable. I’m also grateful for the
sensible advice I invariably obtained from my good friend Andy Galloway of the
University of York who was always willing to act as a discreet sounding board
on various aspects of the organisation of the symposium.

Finally, I must of course thank all the sponsors of the symposium, but here I
should particularly acknowledge the generous financial support of the University
of Teesside’s School of Computing, whose willingness and readiness to underwrite
this symposium from the outset were in large part instrumental in its coming
about at all.

February 2006 Steve Dunne
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Retrospective and Prospective for Unifying
Theories of Programming

Eric Hehner

Department of Computer Science, University of Toronto
BA5224, 40 St. George St. Toronto ON Canada M5S 2E4

Tel.: 1 416 978 6026; Fax: 1 416 978 4765
hehner@cs.utoronto.ca

www.cs.utoronto.ca/∼hehner

Abstract. This paper presents a personal account of developments lead-
ing to Unifying Theories of Programming, and some opinions about the
direction the work should take in the future. It also speculates on con-
sequences the work will have for all of computer science.

1 UTP and Me

My introduction to formal methods was the book a Discipline of Programming
[3] by Edsger Dijkstra in 1976. I wrote a small contribution in a paper named
do considered od [14] in that same year. In that paper I proposed recursive
refinement as a way of composing programs, and a different way of generating
the sequence of approximations for loop semantics that is more general than
the one in Dijkstra’s book, applying to all looping constructs, including general
recursion.

It was standard in semantics work then (and for some people, it remains so
today) to use a meaning function (sometimes written as double square brackets)
that maps program text to its meaning. In Dijkstra’s book, he used the wp func-
tion to map a program text and postcondition to a precondition. If S is some
program text, and R is a postcondition, then wp(S ,R) is the exact precondition1

for execution of S to terminate and establish postcondition R. In my 1976 pa-
per, I made the proposal that we should stop thinking of programs as mere text,
and start thinking of them as mathematical expressions in their own right. We
should not need a function to map a program to its meaning. My proposal was
that, like any mathematical expression, a program can stand for its meaning all
by itself. So, in that paper, program S is a function that maps a postcondition R
to a precondition, written S (R). Sequential composition (semicolon) is just func-
tion composition. I proposed that the arrow in a guarded command is a lifted
1 The English meaning of “precondition” is “something that is necessary beforehand”.

In Dijkstra’s use, the “weakest precondition” wp was the weakest sufficient condition,
i.e. the necesary and sufficient condition. To avoid misusing the word “precondition”,
I am saying “exact precondition” to mean the condition that is both necessary and
sufficient.

S. Dunne and W. Stoddart (Eds.): UTP 2006, LNCS 4010, pp. 1–17, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 E. Hehner

implication, that the box connecting guarded commands is a lifted conjunction,
and that the if fi brackets are a “totalizer”. That proposal seems tame today,
but in 1976 it was apparently bizarre, causing rejection of the paper in its first
submission; and in its second submission the referees insisted that it be removed
from the paper for publication. Since there were other contributions of the paper
that I really wanted published, I obeyed the referees and removed it from the
paper for publication in Acta Informatica in 1979. But it remains in the 1976
technical report version. Fortunately for all of us, Ralph Back in Finland read the
technical report, adopted the proposal, and began the work called “Refinement
Calculus”, culminating in a wonderful book with that same name in 1998 [1].

Meanwhile, I made an amazing discovery: that Dijkstra’s book was not the
first work on formal methods; from the lack of references in the book, I had
supposed it was. But it owed a lot to a paper by C.A.R.Hoare in 1969 [16].
That paper, and another in 1972 on data abstraction [17], and some lectures by
Tony on CSP, convinced me to spend my sabbatical in 1981 in Oxford. It was an
intellectually lively place, including Jean-Raymond Abrial, Steve Brookes, Peter
Henderson, Cliff Jones, Lockwood Morris, David Park, Bill Roscoe, Dana Scott,
Ib Sorensen, Joe Stoy, Bernard Sufrin, Jim Woodcock, and others. But it was
not a good year for the Hoare family.

I had two projects while I was in Oxford. I had started writing a book in the
year before going there, but then David Gries started writing the same book,
and sending me the chapters for comment. David wrote much faster than I
did, and quickly overtook me. So I decided to put my effort into comments on
David’s book, and abandon mine. But in Oxford, Tony persuaded me that there
is room for another book, especially if I pitch my book at a different level than
David’s. So I resumed writing, aiming for a more advanced audience. The book
[12] was published in Tony’s series in 1984, and in it programs were predicate
transformers.

My other project in Oxford in 1981 was to find a good model for CSP. I decided
that in this project, programs were not predicate transformers, but predicates.
Each day I would go into Tony’s office before he arrived, and fill his board with
my latest formulas, hoping that would catch his attention. I guess it worked.
The paper [13] was a technical report in 1981, and published in TCS in 1983.

I liked the idea of using predicates for programs so much that I decided to
apply it beyond CSP to a wide variety of programming constructs. My principles
of “predicative programming” were:

– a specification is a predicate2

– refinement is implication
– a program is an implemented specification

2 I am using the word “predicate” here as I used it back then, and as some people
still use it today, to mean a boolean expression, particularly one that contains or
may contain subexpression(s) of other type(s), and/or quantifiers. I now say “boolean
expression” no matter what types its expressions have, and no matter what operators
are used wihin. I now use “predicate” to mean a function whose result is boolean.
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1982, IFIP Working Group 2.3 (Programming Methodology) allowed me an ex-
traordinary 4 hours to present these ideas. For the most part, the presentation
went very well, but there was one point that went badly. I wanted a “total cor-
rectness” formalism (who wouldn’t?), and I achieved it by borrowing the weakest
specification (given an initial state, any final state is satisfactory) to represent
possibly nonterminating computations. I “justified” it by saying that if you don’t
care what the result is, then you don’t care if there is a result (I am not defend-
ing that argument any more). I gained “total correctness” at the cost of making
sequential composition (semicolon) almost but not quite associative. I had a
theorem saying that if the state space is infinite (one integer variable makes it
infinite) then semicolon is associative for all programs. I had another theorem
saying that if there is at least one variable not appearing in any program (one
unused boolean variable is enough), then again semicolon is associative for all
programs. I remember Butler Lampson saying that I should just assume there’s
one extra variable, and get on with it. I also remember that Tony was unhappy;
for him, associativity of semicolon had to be unqualified.

In 1982 March, Tony came to Toronto for a week, in part so that we could
resolve the problem. I was opposed to adding an extra boolean variable that
would not appear in any program, but would burden nearly every non-program
specification. Tony was opposed to any qualification on associativity. In the end,
Tony convinced me to add the alternative he preferred as an appendix to my
paper. I tried to give the variable some physical motivation, so I called it s
for “start/stop”, saying that s with “initial” decoration means “the computa-
tion has started” and that s with “final” decoration means “the computation
has stopped”. That variable became the ok variable in UTP [15]. “Predicative
Programming” was published [11] in CACM in 1984.

There was a growing number of theories of programming. I had predicative
programming; Edsger Dijkstra had wp ; Cliff Jones had VDM; David Parnas had
limited domain relations, and a second theory that he called “standard seman-
tics”; and there was another theory of partial relations proposed by Bill Robison
and independently by Bernard von Stengel, that later became the refinement
semantics of Z. These were not just notationally different; they had substantive
differences in expressive power and in their treatment of termination. So I set
out to compare these different theories in a paper called “Termination Conven-
tions and Comparative Semantics”, published in Acta Informatica in 1988 [10].
The basis of the comparison was a translation from each of them to my own
predicative semantics, and vice versa. I included a catalogue of semantics for all
the aforementioned theories, expressed both with and without the extra boolean
variable that indicates proper termination. So, in my mind at least, this paper
was very much a forerunner of the UTP work.

One more idea that may have influenced UTP is parallel by merge. In 1990,
Theo Norvell was my PhD student, and he suggested parallel by merge as a way
of defining parallel composition that is both implementable and insensitive to
frame. That is the form of parallelism in the 1993 edition of my book a Practical
Theory of Programming [6], and in UTP in 1998. I have since abandoned it, and
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for the 2002 edition and onward I have returned to simple conjunction (to keep
implementability, it must be sensitive to frame) that I had used from 1981 to
1989 [11, 13].

Since publication of UTP, both it and my work have been extended to include
probabilistic computation [7], but I think neither work influenced the other;
perhaps we were both influenced by the same source [18].

This history of work leading to UTP has been a personal one, and I am not
sure it accords well with a history that Tony Hoare and He Jifeng might tell.
My doubt comes from the fact that none of the work I have mentioned, except
for the predicate model of CSP [13], was referenced in the UTP book.

2 UTP Without Me

I am pleased to think that I made some contribution to the UTP project. But
there is an important point on which I have tried hard and so far failed to
have any influence. I think the point is inevitable, so I will now make another
attempt.

The tradition in programming theories is not to speak directly about exe-
cution time. To refer to theories that talk about whether a computation ter-
minates, and the result upon termination, we commonly use the words “total
correctness”, suggesting that nothing else is of interest. I suspect the sentiment
was (and maybe still is) that execution time is too dependent on factors (com-
piler, hardware) beyond the program. There are circumstances when time is
important, called real-time or reactive programming. And theories have been
invented [2], and new ones are still being invented [4], to reason about execution
time. An entire logic, called temporal logic, was invented to specify and reason
about timing. But none of that is necessary. All you need to do is add a time
variable, placing increments ( t := t + something ) in the program wherever
they are needed to account for the time required by the other operations in the
program. Then you reason about the time variable exactly the same way you
reason about the other variables, using exactly the same theory you were using
before you added time. I presented this position in a paper [9] published in 1989
January.

Then in June of that year, in the opening address of the first MPC [8], I
presented a more compelling reason for the inclusion of a time variable. To cal-
culate the exact execution time, the time variable can be real-valued, and the
increments should be exactly the execution time of the instructions compiled
for the machine that will execute the instructions. A more abstract, machine-
independent measure of time uses an integer-valued time variable, counting iter-
ations of loops and recursive calls, ignoring all else. A still more abstract measure
of time uses a boolean-valued time variable that just distinguishes finite execu-
tion time (termination) from infinite execution time (nontermination); that is
the ok variable of UTP. But there’s a big difference between numeric (real- or
integer-valued) time and boolean time: the former can tick, and the latter can-
not. We can do arithmetic on the time variable if it is a numeric type, but not
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if it is boolean. And that has a profound effect on the semantics and proof rules
of the programming language, as I shall explain.

3 If and When

The acceptance of 0 as a number has taken a long time, and is still incomplete.
In English, no-one quite knows whether to treat 0 as singular or plural, does he?
On your keypad or telephone it is placed after 9, which is mathematically silly.
In the 1991 Toronto phone book, there is a page that helpfully gives the time
difference to various places in the world; to the U.K. it says “+5”, and to Costa
Rica it says “-1”. But to Cuba it says “NA”, and the legenda explains “time
difference not applicable”. By 1996 they tried to correct it; for Cuba it says “=”,
with the same explanation. In 1997 they discovered the number 0, but they felt
the need then, and still do today, to explain that 0 means “no time difference”.

When we say “There are a number of issues to discuss.”, we don’t mean there
might be 0 of them. When 0 really is a possibility, people often add the phrase
“if any”, as in “Please put all the leftovers in the fridge, if there are any.”. They
create a case analysis, when none was needed. For example, the 1991 Canadian
census asked the question “How many persons who have a usual home somewhere
else in Canada stayed here overnight between 1991 June 3 and 4?”, then offers
a place to tick if there were none, and a box to fill with the number of persons
if there were some. The people designing the form probably know perfectly well
that the box is sufficient, but without the place to tick “if none” they would be
overwhelmed by people complaining that they can’t answer the question.

The Fortran language of 1955 had a loop construct, but its body had to be
executed at least once; I suppose it seemed senseless to have a loop whose body
might be executed 0 times. The error was corrected in Algol in 1958, and in
PL/I, and in Pascal, in part: iteration might be 0 times, but the data structure
over which one is iterating, the array, had to have at least one element. In Pascal
that meant there was no null string. And that put the algebra of data structures
back where the algebra of natural numbers was prior to 1930. We learn, but
slowly; two steps forward, one step back.

The authors of UTP might have chosen to include a boolean variable to
distinguish executions that take 0 time from those that take positive time. This
variable would complicate the semantics to no advantage, and it would infect all
specifications, causing the authors to invent “designs”, which are specifications
with this variable suppressed but still implicit. I commend the authors for not
making this mistake. Perhaps someday, in English (or its successor), we won’t
feel the need to ask for “the number, if any”; we will simplify by just asking for
“the number”, accepting 0 as an answer.

In English, one sometimes hears the phrase “if ever”, or “if and when”, as
in “I’ll deal with that if and when it happens.”. If we just say “I’ll deal with
that when it happens.”, undoubtedly someone would immediately ask: “What if
it never happens?”. But it seems to me that case is already covered: if it never
happens, I’ll deal with it never. We simplify by eliminating the case analysis, and
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to do that we must learn to accept∞ as an answer to the question “when?”. We
are not bothered by the different grammar in the two sentences “I don’t have
any bananas.” and “I have 0 bananas.”; one uses a negative verb and the other
a positive verb, but we take them to mean the same thing. Likewise we should
take “It never happens.” and “It happens at time ∞.” to mean the same thing.
Perhaps someone in the future will show some census forms in which the case
∞ was separated off unnecessarily, and that speaker’s audience can all have a
good laugh at their ancestors’ unwillingness to accept infinity as a number.

The authors of UTP have chosen to include a boolean variable ok to distin-
guish executions that take finite time from those that take infinite time. This
variable complicates the semantics to no advantage, and it infects all specifi-
cations, causing the authors to invent “designs”, which are specifications with
this variable suppressed but still implicit. Worse than that, this variable causes
duplication of work. Suppose I want to show that a computation involving loops
delivers a certain result within a certain time bound. The next section shows that
the work necessary to prove ok ′ is equivalent to finding an upper time bound,
which I must repeat using a time variable in order to prove an upper time bound.

4 What Is the Meaning of Loops?

There are two usual ways to give meaning to loops (and recursions) in a total
correctness semantics: the limit of a sequence of approximations, and a least
fixpoint. To find the meaning of b ∗ S using the limit of approximations, define

W0 = true
Wn+1 = (S ; Wn) � b � II

Then
b ∗ S = (∀ n . Wn)

where the quantification may need to continue past the naturals and through
the transfinite ordinals. As an example, we can find the semantics of

(x �= 1) ∗ (x := x div 2)

in one integer variable x . We find

W0 = true
W1 = (x := x div 2 ; true) � x �= 1 � II

= (x = 1⇒ x ′ = 1)
W2 = (x := x div 2 ; x = 1⇒ x ′ = 1) � x �= 1 � II

= (1 ≤ x < 4⇒ x ′ = 1)

Jumping to the general case, which we could prove by induction,

Wn = (1 ≤ x < 2n ⇒ x ′ = 1)
And so

(x �= 1) ∗ (x := x div 2)
= (∀n . 1 ≤ x < 2n ⇒ x ′ = 1)
= (1 ≤ x ⇒ x ′ = 1)



Retrospective and Prospective for Unifying Theories of Programming 7

A sequence of approximations introduces an integer-valued time variable in dis-
guise: it is the subscript n . Wn is the strongest specification of behavior that
is observed before time n , in the measure that counts iterations. If we have an
integer-valued time variable, it is unnecessary to introduce another one for the
same purpose, and we can simplify the semantics of loops.

The other usual way to define loops is as a least fixpoint.

b ∗ S = μX . (S ; X ) � b � II

This is closely analogous to defining the natural numbers N as a least fixpoint.

N = μX . {0} ∪ {n + 1 | n ∈ X }
For more familiarity, we can remove μ by replacing the definition with two axioms
called construction and induction. Loop construction

b∗S = (S ; b ∗ S ) � b � II

says that a loop equals its first unrolling. Stated differently, b ∗ S is a solution
(fixpoint) of the equation (in unknown X )

X = (S ; X ) � b � II

It is analogous to natural construction

N = {0} ∪ {n + 1 | n ∈ N}
which says that 0 is a natural number, and if n is a natural number, so is n + 1
(II is analogous to 0, �b� is analogous to ∪, and unrolling is analogous to
adding 1). Stated differently, it says that N is a fixpoint of an equation. Loop
induction

(∀ σ, σ′ . X = (S ; X ) � b � II ) ⇒ (∀σ, σ′ . X ⇒ b ∗ S )

where σ is the state variables, says that b ∗ S is as weak as any fixpoint, so it is
the weakest (least strong) fixpoint. It is analogous to natural induction, which
can be written in a nontraditional form (to make the analogy clearer), replacing
predicate satisfaction with set membership, as follows:

∀X . X = {0} ∪ {n + 1 | n ∈ X } ⇒ N ⊆ X

which says that N is a subset of any fixpoint, so it is the smallest fixpoint.
Once again, if we lack an arithmetic time variable, then the loop semantics must
compensate by introducing a kind of loop-arithmetic. If we have an arithmetic
time variable, this is unnecessary, and we can simplify the semantics of loops.

Programming from specifications by means of refinement replaces the question
“what does this program mean?” with the question “does this program refine
that specification?” [5]. All a programmer needs to know about the meaning of
program P is: for what specifications S is S ⇐ P a theorem? What a programmer
needs to know about II is

σ = σ′ ⇐ II
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In UTP (as in my work), II is defined by strengthening that refinement to
equality, but for programming, all we need is the implication. The same comment
applies to assignment, conditional, and sequential composition.

I am content to form loops by recursive refinement (as in my 1976 paper [14]).
For example, if the specification (in one integer variable x ) is x ≥ 1⇒ x ′ = 1, I
can refine it as follows:

(x ≥ 1⇒ x ′ = 1) ⇐ II � x = 1 � (x := x div 2 ; x ≥ 1⇒ x ′ = 1)

With this refinement, we can now execute the specification x ≥ 1 ⇒ x ′ = 1 by
executing what refines it, and when specification x ≥ 1 ⇒ x ′ = 1 is encountered
again, it is again executed by executing what refines it. That’s a loop. Knowing
what II , assignment, conditional, and sequential composition refine is sufficient
for proof of this refinement; we do not need any further theory for loops.

If we are interested in execution time, we include a time variable. Let’s make
it integer-valued, and count iterations. We can prove

(x ≥ 1⇒ t ′ ≤ t + log x ) ⇐ II � x=1 � (x :=x div 2 ; t := t + 1 ; t ′ ≤ t + log x )

which says that for positive x , the execution time is bounded above by log x .
We can also prove

(x < 1⇒ t ′ =∞) ⇐ II � x = 1 � (x := x div 2 ; t := t + 1 ; x < 1⇒ t ′ =∞)

which says that for nonpositive x , the execution time is infinite. And for free we
get the conjunction of all that we proved previously: execution satisfies

(x ≥ 1⇒ x ′ = 1) ∧ (x ≥ 1⇒ t ′ ≤ t + log x ) ∧ (x < 1⇒ t ′ =∞)

It is extremely useful to be able to prove partial properties separately, and
specifically to be able to prove results and timing separately, and then to combine
them for free.

Although I am content to form loops without any loop syntax and without
any theory that pertains to loops, apparently some people feel the need for loop
syntax and theory. So UTP provides the syntax b ∗P . All we need to say about
it is that

S ⇐ b ∗ P

is syntactic sugar for

S ⇐ (P ; S ) � b � II

We do not attribute any meaning to b∗P , but only to the refinement S ⇐ b∗P .
We do not need a limit of a sequence of approximations. We do not need least
fixpoints. If we want to know about time (including termination), we add a time
variable, but we don’t have to complicate the semantics of loops.

My example recursive refinement has the form of a ∗ loop, but recursive
refinement works for any loop structure, including loops with intermediate exits
and deep exits, and for general recursion, not just tail recursion (see [6]).
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5 What Can We Prove About Loops?

The two traditional ways of defining loop semantics (limit of a sequence of ap-
proximations, least fixpoint) for “total correctness” are too complicated to be
used in proofs, and in practice they never are used. Instead, those who use formal
methods split the problem into a “partial correctness” proof and a termination
argument. “Partial correctness” of

(x ≥ 1⇒ x ′ = 1) ⇐ (x �= 1) ∗ (x := x div 2 ; x ≥ 1⇒ x ′ = 1)

is exactly

(x ≥ 1⇒ x ′ = 1) ⇐ (x := x div 2 ; x ≥ 1⇒ x ′ = 1) � x �= 1 � II

For termination they use a “variant” or “bound function” or “well-founded set”.
In this example, they show that for x > 1, x is decreased but not below 0
by the body x := x div 2 of the loop. The variant is again time in disguise;
they are showing that the execution time is bounded by x in the measure that
counts iterations. Then they throw away the bound, retaining only the one bit
of information that there is a bound, and hence termination. In the example,
this corresponds to a proof of

(x ≥ 1⇒ t ′ ≤ t + x )⇐ (x :=x div 2 ; t :=t + 1 ; x≥ 1⇒ t ′ ≤ t + x ) � x �= 1� II

This linear time bound is rather loose; for about the same effort we prove a
logarithmic time bound. And in exactly the same way, we prove nontermination
when x < 1. More generally, we can prove useful lower time bounds; we are not
limited to the existence of an upper bound, which is what “total correctness”
provides.

A “total correctness” semantics makes the proof of invariance properties dif-
ficult, or even impossible. For example, we cannot prove

x ′ ≥ x ⇐ b ∗ (x ′ ≥ x )

which says, quite reasonably, that if the body of a loop doesn’t decrease x , then
the loop doesn’t decrease x . The problem is that the semantics does not allow
us to separate such invariance properties from the question of termination. If, in
place of the above, we write

x ′ ≥ x ⇐ (x ′ ≥ x ; t := t + 1 ; x ′ ≥ x ) � x �= 1 � II

as I advocate, then the proof of the invariance property is easy.

6 What Can We Prove About Infinite Loops?

What can we prove about an infinite loop? According to the least fixpoint se-
mantics, nothing. According to that semantics, true ∗ P is equivalent to true,
which is completely arbitrary behavior. It does not imply ¬ ok ′ ; the behavior
may be nonterminating, or terminating. If we add a time variable, we cannot
prove t ′ = t +∞. If the body of the loop includes communications (interactions),
we cannot prove they happen. My way, to prove S , we must prove
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S ⇐ (P ; t := t + 1 ; S ) � true � II

or more simply

S ⇐ (P ; t := t + 1 ; S )

(which is what I would write in the first place). Taking II as body for the
moment, we cannot prove t ′ ≤ t + n for finite n ; that would require proving

t ′ ≤ t + n ⇐ t ′ ≤ t + 1 + n

which is not so. But we can prove t ′ > t + n . We can also prove t ′ = t +∞;
that requires proving

t ′ = t +∞ ⇐ t ′ = t + 1 +∞
and since, in my algebra, ∞ absorbs finite additions (∞ is a fixpoint of tick ),
that refinement is a theorem. If the body of the loop includes communications,
we can prove that they do indeed happen.

A specification S is implementable (in UTP terminology, “healthy”) if and
only if for all initial states (including time) there is a final state (including time)
that satisfies the specification with nondecreasing time (and non-undo-able com-
munications, but I’ll omit that for now):

∀σ . ∃σ′ . S ∧ t ′ ≥ t

Refinement by a program is proof of implementability. For recursive refinement,
we need to know separately that the specification is implementable. Although

false ⇐ (P ; t := t + 1 ; false)

is a theorem, we reject false because it is unimplementable; we have not imple-
mented a miracle.

Disturbingly, we can prove both of the implementable specifications x ′ = 2
and x ′ = 3 . Both

x ′ = 2 ⇐ (t := t + 1 ; x ′ = 2)

x ′ = 3 ⇐ (t := t + 1 ; x ′ = 3)

are theorems. There is no inconsistency here. My theory of programming is sound
in the following sense: if S is an implementable specification, and F is a program
(possibly with call sites), and we can prove the refinement S ⇐ F (S ), then no
observation of the corresponding computation will ever contradict S . The point is
that observations are made at finite times, whereas the results x ′ = 2 and x ′ = 3
happen at time ∞ (never). For exactly the same reason, we can prove both

¬ ok ′ ⇐ (t := t + 1 ; ¬ ok ′)

ok ′ ⇐ (t := t + 1 ; ok ′)

If this is at first disturbing, consider it the price to pay for the ability to prove
results and timing separately, and combine them for free.

Perhaps more disturbingly, we can also prove

t <∞⇒ t ′ <∞ ⇐ (t := t + 1 ; t <∞⇒ t ′ <∞)
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which seems to say that if the computation starts at a finite time, it will end at
a finite time. But without a time bound, the specification offers no opportunity
for complaint that the computation is taking too long. The theory should allow,
and does allow, any computation whose observation does not contradict the
specification.

The theory is incomplete in the following sense. Even if S is an implementable
specification, and observations of the computation(s) corresponding to S ⇐
F (S ) never (in finite time) contradict S , the refinement might not be provable.
But in that case, there is another implementable specification R such that the
refinements S ⇐ R and R ⇐ F (R) are both provable. In that weaker sense,
the theory is complete. There cannot be a theory of programming that is both
sound and complete in the stronger sense.

7 The Problem with Halting

The halting function (predicate) is defined to tell whether a program’s execution
terminates. I will make two simplifications to the standard formulation, neither
of which changes anything essential. We need to encode programs as data so
we can apply the halting function to something that represents a program. In
the standard formulation, programs are numbered, so we can apply the halting
function to a number representing a program. Instead, I use a more transparent
encoding: a program is represented by its text (character string). (That is how a
program is presented to a compiler or interpreter.) The other simplification is to
eliminate all mention of initial state (input). One way to do that is to define the
halting function applied to program text p as saying whether “p halts from all
initial states” or “p fails to halt on some initial state”. Another way to do it is to
pick some initial state as the one where execution of any program always starts;
if you want some other initial state, just start the program with some initializing
assignments to create the state you want. Define predicate H : T −→ B, where
T is the text data type and B is the boolean data type, so that

H (“ II ”) = true
H (“ true ∗ II ”) = false

and so on. Define text P as follows:

P = “ (true ∗ II ) � H (P) � II ”

If we assume H is a functional program, then P represents a program. Now we
ask: what is the result of H (P) ? If the execution of P terminates, then H (P) is
true, and P represents a program that is equivalent to true∗ II , so execution of
P does not terminate. And if the execution of P does not terminate, then H (P)
is false, and P represents a program that is equivalent to II , and so execution
of P does terminate. Conclusion: H cannot be a program; it’s an incomputable
function. That’s the orthodox argument, and the orthodox conclusion, first made
by Turing, and now found in many textbooks.

In UTP, programs are a special case of specification, so let me generalize H
to apply to all specification texts, not just to program texts. In particular,
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H (“ ok ′ ”) = true
H (“ ¬ ok ′ ”) = false

And this time, we don’t make any assumption that H is a functional program
(computable function). Define specification text S as follows:

S = “ ¬ ok ′ � H (S ) � ok ′ ”

Now we ask: what is the result of H (S )? If S specifies terminating behavior, then
H (S ) is true, and so S specifies nonterminating behavior. And if S specifies
nonterminating behavior, then H (S ) is false, and so S specifies terminating
behavior. What do you conclude from that?

This argument about specifications has exactly the same form as the orthodox
argument about programs. Both arrive at a self-contradiction. We look for a
way out by looking for an assumption that was wrong. In the argument about
programs, the assumption was made that H is a program, so we withdrew that
assumption. But from the argument about specifications, we see that the problem
is still there, even without that assumption.

My conclusion is that we cannot consistently say the sentence “H tells us,
for all specification texts S , whether S specifies terminating behavior.”. The
inconsistency is not immediately apparent, but the above argument shows us
that it’s there. This is similar to saying that the sentence “The barber, who is
a man, shaves all and only the men in his town who do not shave themselves.”
is not obviously self-contradictory, but a short proof or argument shows it to be
so. And from the first version of the story about H applied to program codes, I
do not conclude that H is a perfectly well defined but incomputable function; I
conclude there also that there is an inconsistency in the definition of H .

Let me try to make the inconsistency in the definition of H more apparent.
Within S , H (S ) and ok ′ have the same role. So S represents

¬ ok ′ � ok ′ � ok ′

which says, as directly as possible, that if execution terminates, then it doesn’t
terminate, and if it doesn’t terminate then it does. There is nothing wrong with
having a primed variable between the conditional triangles; for example, the
specification

x ′ = 2 � even(x ′) � x ′ = 3

says quite reasonably that if the final value of x is even, then it should be 2, and if
odd it should be 3; it is equivalent to x ′ = 2 ∨ x ′ = 3 . However, the specification
¬ ok ′�ok ′�ok ′ is equivalent to false (independent of the interpretation of ok ′ ),
so it is unimplementable (unhealthy). We are asking H to tell us the termination
status of an unimplementable specification.

Returning to the “program” example

P = “ (true ∗ II ) � H (P) � II ”

is P an implementable specification? If we assume it is, then it might seem
reasonable to ask H about its termination status (without any assumption that
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H is computable), and we are led into the same contradiction as before. If we
assume it isn’t and don’t ask H about its termination status, we lose the very
specification we were using to demonstrate that H is incomputable.

The problem with H doesn’t stop there. If we could define H consistently
on just the implementable specifications, then we could consistently extend its
definition to all specifications by, for example, saying H (s) = false for all unim-
plementable specifications s . If P is unimplementable, then P is equivalent to
II , which is implementable. There is no way out.

The situation is exactly the same as for an interpreter of boolean expressions
(also known as a prover). Suppose we try to define I : T −→ B so that, when
we apply I to a text representing a boolean expression, we get the result of
evaluating the boolean expression. Now define

Q = “ false � I (Q) � true ”

or instead, to simplify, define

Q = “ ¬ I (Q) ”

Applying I to Q yields inconsistency. This is exactly Gődel’s incompleteness
theorem: Q is saying that Q is not a theorem. Either we leave I incompletely
defined (specifically, it does not interpret Q ), or we suffer inconsistency. (I note
with some irony that an interpreter is a meaning function, which I began this
paper by eliminating!)

Wait a minute: there is a way out. Interpreter I is a program, and H is just a
simplification of I : I tells us the result of evaluating, and H just tells us whether
there is a result. So H really is a program. Applying H to P and to S results in
an infinite loop (as does application of I to Q ). We could say that H does deliver
a result for P and for S , and I does deliver a result for Q , but only at time ∞.
The “incomputable” function H is nothing but a program whose execution, for
some input, is nonterminating. Such programs are common, and some of them
are useful. This way out is a great mathematical simplification.

8 The Problem with Vacuum Cleaners

Here’s a “proof” that a vacuum cleaner is unbuildable. If you could build one,
then you could use it to clean out its own bag. But that’s a self-contradiction
(making the bag empty makes the bag full, and vice versa), so a vacuum cleaner
is unbuildable. The “proof” that a vacuum cleaner is unbuildable is like the
“proof” that the halting function is incomputable in the following ways. It ac-
cepts without question that a vacuum cleaner is at least a meaningful, consistent
concept, just as the standard incomputability proof accepts without question
that a halting function is at least a meaningful, consistent concept. Then the
vacuum cleaner is applied to itself, just as the halting function is applied to
itself. And, most importantly, time is not considered in the argument: in each
case, there is no static solution, so we have inconsistency.

To restore consistency, we seem to have three options. The first option, à
la Turing, is to remain steadfast in the belief that the vacuum cleaner and
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halting function are at least meaningful (consistent) concepts, but to label them
as “unbuildable” and “incomputable” respectively. That withdraws an assump-
tion made in the argument, but it was an irrelevant assumption. If you could
just specify (never mind build) a vacuum cleaner, you arrive at the same contra-
diction. If you could just specify (never mind compute) the halting function, you
arrive at the same contradiction. This option is not a way out. Neither “unbuild-
ability” nor “incomputability” serve the purpose for which they were invented:
to restore consistency.

The second option, à la Gődel, is to say that the definition of a vacuum
cleaner, and the definition of the halting function, are inconsistent unless we
leave them incomplete, and we do not apply them to the example that gives rise
to the contradiction.

The third option is to add a time variable. Then we can ask what really does
happen (over time) if we apply them to the troublesome examples. A vacuum
cleaner really is buildable, and the halting function really is programmable.
What really happens if someone uses a vacuum cleaner to clean out its own
bag is that they create an infinite loop, blowing dirt forever around a circular
hose. But that’s not an inconsistency. Indeed, there are physical systems built
intentionally as infinite loops; for example, pumping electrons around a circuit,
doing useful work as they go. Likewise, applying the halting function to its
troublesome example is an infinite computation, not a self contradiction.

A simpler, but maybe less visual, example, is the problem of the NOT gate. If
we could build one, then we could use it in a closed circuit that includes just one
NOT gate, and nothing else. If we ignore time, we find an inconsistency: assuming
either final state of the circuit leads to a contradiction. The inconsistency is
not eliminated by labeling NOT gates “unbuildable” or “incomputable”. The
problem is eliminated if we outlaw this particular use (and all similar uses) of
the NOT gate. But the best solution is to admit that a NOT gate takes time;
we look at the circuit’s behavior over time, and we do not worry about what
its final state might be. It is a useful circuit called an oscillator. (A practical
oscillator is more complicated, but at its heart there is a NOT gate in a loop.)

9 What is a Time Bound?

I have argued that a claim of termination should be accompanied by a time
bound. Now I ask: what is acceptable as a time bound?

Finding the execution time of any program can always be done by transform-
ing the program into a function that expresses the execution time. To illustrate
how, let us again look at the example

(n �= 1) ∗ (n := n div 2)

in natural variable n . The first step in expressing the execution time is, not
surprisingly, to get rid of the loop notation in favor of recursive refinement.

n ′ = 1 ⇐ II � n = 1 � (n := n div 2 ; n ′ = 1)
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The next step is to add a time variable, and choose a timing policy. We express
the execution time as f (n), where function f must satisfy

t ′ = t + f (n) ⇐ II � n = 1 � (n := n div 2 ; t := t + 1 ; t ′ = t + f (n))

which can be simplified to

f (n) = 0 � n = 1 � (1 + f (n div 2))

From this recursive definition of f , we see

f (1) = 0
f (2) = 1 + f (1) = 1
f (3) = 1 + f (1) = 1
f (4) = 1 + f (2) = 2

and so on. We also see

f (0) = 1 + f (0)

which has no finite solution, but according to my axioms for numbers [6], it
has solution ∞ (because ∞ absorbs finite additions). This is exactly the right
answer for how long the computation takes when n is 0. It would have been a
duplication of effort to worry first about termination before calculating execution
time.

Now consider this famous program whose execution time is considered to be
unknown:

(n �= 1) ∗ ((n := n/2) � even(n) � (n := 3× n + 1))

where n is a natural variable. It is not even known whether the execution time
is finite for all n > 0. Following the same steps as before, we find

f (n) = 0 � n = 1 � ((1 + f (n/2)) � even(n) � (1 + f (3× n + 1)))

or, more readably,

f (n) = if n = 1 then 0
else if even(n) then 1 + f (n/2)
else 1 + f (3× n + 1)

Thus we have an exact definition of the execution time. So why is the execution
time considered to be unknown?

If the execution time of some program is n2, we consider that the execution
time of that program is known. Why is n2 accepted as a time bound, and f (n) as
defined above not accepted? The reason is not that f is defined recursively; the
square function is defined in terms of multiplication, and multiplication is defined
recursively. The reason cannot be that n2 is well behaved (finite, monotonic,
and smooth), while f jumps around wildly and might sometimes be infinite-
valued; every jump and change of value in f is there to fit the original program’s
execution time perfectly, and we shouldn’t disqualify f for being perfect. One
might propose the length of time it takes to compute the time bound as a reason
to reject f . Since it takes exactly as long to compute the time bound f (n) as to
run the program, we might as well just run the original program and look at our
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watch and say that’s the time bound. But log log n is accepted as a time bound
even though it takes longer than log log n to compute log log n .

Could the reason be that function f is unfamiliar, that it has not been well
studied and we don’t know much about it? If it were as well studied and familiar
as square, would we accept it as a time bound?

Consider the linear search program to find the first occurrence of a given item
x in a given list L, and report its position as the final value of variable h . Suppose
that L is infinitely long, and we are told that there is at least one occurrence of
x in the list. We can prove that the execution time (counting iterations) is h′.

t ′ = t + h′ ⇐ h := 0 ; t ′ = t + h′ − h

t ′ = t + h′ − h ⇐ II � Lh = x � (h := h + 1 ; t := t + 1 ; t ′ = t + h′ − h)

Is this acceptable as a time bound? It gives us no indication of how long to wait
for a result. On the other hand, there is nothing more to say about the execution
time. The defect is in the given information: that x occurs somewhere, with no
indication where.

10 Conclusion

When I began programming, I put my program, punched onto a deck of cards,
in the “in” basket; hours later, the computer operator fed it into the computer,
and put the output in the “out” basket, where I retrieved it. Computing in-
volved an initial input and a final output, with no possibility of interaction. A
“total correctness” theory is based on this out-of-date paradigm: without inter-
action, termination is essential. With the addition of interactive communication,
nonterminating computations can be useful, so a semantics that does not insist
on termination is useful. Furthermore, for some programs, for some inputs, we
might well want to guarantee nontermination, which a “total correctness” for-
malism does not do. The operating system, even when I began programming,
was an interacting, nonterminating computation. These days, every program I
use terminates its execution when I click on “quit”. Of course, each response
to me must be a terminating computation; more than that, each response must
come within the limit of my patience.

Throughout this paper, I have used annoying quotation marks around “to-
tal correctness” in order to provide some protection against the appeal of the
phrase. It sounds like something very desirable, but it’s a bad deal. It requires
a complicated semantics of loops (either limit of a sequence of approxima-
tions, or least fixpoint) that is not easily used in proofs. To prove termina-
tion, you must do all the work of finding time bounds, but without the reward.
And you must prove termination before you can conclude anything about re-
sults or time bounds. And when you have proven termination, you have proven
something worthless, because no observation of a computation can falsify it
(nontermination is unobservable). It is time to retire the concept of “total cor-
rectness”, and to terminate our obsession with termination.
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Abstract. In this paper, we study object-oriented programming con-
cepts present in languages like Java and C++ in the framework of the
Unifying Theories of Programming (UTP). This work shows how sub-
typing, data inheritance, (mutually) recursive methods, and dynamic
binding can be described in the UTP by combining and extending the
theories of designs and higher-order procedures. A distinguishing feature
of our approach is modularity: following the style of the UTP, we deal
with each concept in isolation; this makes our theory convenient to model
integrated languages that include constructs from several paradigms.

1 Introduction

Since object-oriented languages have been widely used to develop software for
different domains of application, there has been a strong need to understand
and describe the meaning of object-oriented programs. Approaches like opera-
tional [1, 2], denotational [3], and algebraic semantics [4, 5] have been used to
describe languages and how their concepts are related.

In the Unifying Theories of Programming (UTP) [6], Hoare and He establish
a framework to allow reasoning about different programming paradigms using a
relational calculus. In this paper, we describe in the UTP a subset of the object-
oriented programming concepts found in languages like Java and C++. Our
theory is an extension of the theories of designs and higher-order procedures.

In [7], we can find a description in the UTP of an object-oriented (OO) lan-
guage that handles pointers and visibility mechanisms, among other OO fea-
tures. The authors also present a set of rules related to refinement. However,
(mutually) recursive methods are not described explicitly. Another example of
an OO language described in UTP is presented in [8], where the semantics of
TCOZ [9, 10], a language that combines processes, classes and time, is defined.

We target general object-oriented concepts, rather than any specific language.
We introduce concepts of OO languages progressively and in isolation. We cover
subtyping, single inheritance, dynamic binding, and (mutual) recursion, assum-
ing a copy semantics. By introducing these features independently we provide a
general theory of object-orientation that can be combined with other UTP the-
ories in the usual way. In particular, our long-term goal is to define a combined
theory for reactive, object-oriented designs, and use it to give a semantics to
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OhCircus [11]. This is an object-oriented extension of Circus [12], a combination
of Z [13] and CSP [14] whose semantics is based on the UTP.

In our theory, a class declaration is not a single block, as usual in object-
oriented languages. We have separated constructs to declare a class and its im-
mediate superclass, to declare an attribute, and to declare a method.

Example 1. Consider a simple banking system; we define a class Account , and
its attributes and methods as follows:

class Account ;
att Account id : Z, balance : Z;
meth Account credit = (val x : Z • self.balance := self.balance + x )

The declarations of the attributes and methods are independent, and com-
bined in sequence. In particular, the declarations of the attributes and meth-
ods have to indicate their classes. We show that this approach simplifies the
semantics, and makes the treatment of (mutual) recursion straightforward, as it
should be.

It is well-known that, in the semantics of an object-oriented language, the types
of the variables play a central role due to subtyping and dynamic binding [15].
In our theory, we have a collection of observational variables that are used to
model declarations. They record important typing information and are used in
the semantics of commands. We also drop the assumption that expressions are
total; this is not realistic for object-oriented languages due to the possibility of
attempts to access attributes and methods of a “null object” (that is, “null
pointer exceptions”). As a consequence, we have to characterize well-defined
expressions, and extend the semantics of assignments and conditionals.

Method names are also part of the alphabet of our theory. Their values are
parametrised programs [16]. Their treatment follows the approach originally pro-
posed in [17], and adopted in [15] to handle methods. It is also the approach
followed in the UTP for higher-order procedures.

Dynamic binding is reflected in the value of a method variable. It is a condi-
tional that checks the type of the target object and determines the right program
that defines the behaviour of the method in each case. In this way, we capture
dynamic binding in isolation. This follows the style adopted in an algebraic se-
mantics for object-orientation [5].

This paper is organized as follows. In Section 2, we introduce the alphabet
of our theory: observational variables related to the OO concepts of subtyping,
inheritance and dynamic binding. In Section 3, we define class, attribute and
method declaration. In Section 4, we review the concept of variables, to include
type information explicitly. In Section 5, we describe well-definedness rules for
expressions and the meaning of object creation, type test, type cast and attribute
access. In Section 6, we review the semantics of commands emphasizing method
call. Finally, in Section 7, we discuss related and future work.
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2 Observational Variables

In addition to the programming variables and their dashed counterparts, and to
ok and ok ′ from the theory of designs, our theory includes two new observational
variables: one to record the subclass relation; and another to record the types of
attributes associated to a given class. For classes, we introduce:

Γcls : name �→ name

This is a mapping from class names to the corresponding name of their immediate
superclasses. This observational variable allows us to introduce new types other
than the primitive ones: booleans (B) and integers (Z).

Our second observational variable holds information about the attributes of
each class and their types:

Γatt : name �→ {name �→ type}
This is a mapping from a class name to a description of its attributes, which
maps each attribute name to its type; type stands for any primitive type, or any
name in domΓcls .

The method names are also part of the alphabet of our theory. Their values are
parametrised programs (pds • p), where pds is a list of parameter declarations,
and p is a program: the body of the parametrised program, which uses the
parameters. Value (val), result (res), and value-result (valres) parameters are
allowed. The notation pds stands for any parameter declaration list, possibly
including the three parameter passing mechanisms. For example, val x : X ;
res y : Y ; valres z : Z , is a valid instance of pds , where x , y, and z are
variable names and X , Y , and Z are types. The function types applied to a list
of parameter declarations returns the parameter types as a set. For example,
types applied to the previous example yields {X ,Y ,Z}.

In bodies of the values of the observational variables named after methods
nested conditionals with each branch representing the meaning of a method
redefinition. For instance, considering that C is a subclass of B , which itself is
a subclass of A, and that m is a parameterless method defined in A (with body
ma), and redefined in both B and C (with bodies mb and mc), the m value is:

valres self : Object •
mc � self is C � (mb � self is B � (ma � self is A �⊥))

Based on the type of the current object (self) the nested conditional allows
selection of the more specialized version of m. When m is not defined for a given
class, then the behaviour of a call to m with an object of this class as a target is
unpredictable (⊥). The condition self is N , for a class name N , checks whether
the value of self is an object of class N , or one of its subclasses. This is why the
type of the object held by self is tested from the more specialized subclass to
the less specialized one in the class hierarchy.

Finally, for each programming variable x , besides x itself, and x ′, we include in
the alphabet two more observational variables (xt and xt ′) to record the declared
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type of x . This is potentially different from the actual (runtime) type of the value
of x , which can be an object of a subclass of the type recorded in xt , when this
is a class.

Object-oriented features such as attribute overriding, variable shading, and
the use of super or related notations (to refer to elements of a superclass) are
not considered here because they are only syntactic abbreviations that can be
easily eliminated by preprocessing. We also consider that the names of classes,
attributes, methods (except for method overriding), local variables and parame-
ters are different. This allows us to write simpler predicates while not imposing
any relevant practical limitation.

3 Declarations

In this section we provide the meaning, as designs, for class, attribute and
method declarations.

3.1 Classes

As mentioned before, our aim is to add each feature of object-orientation in
isolation. In this direction, a class declaration introduces just a new type, without
any attribute or method. We use the notation of designs in the UTP to define
each feature. The declaration class A, explained in the sequel, stands for the
design:

class A =df

(
A �= Object∧
A /∈ domΓcls

)
�
(

Γ ′
cls = Γcls ∪ {A �→ Object}∧

w ′ = w

)

where w = inα(class A) \ {Γcls}.
By default, every class has as parent a special class named Object , which has no
attributes or methods. It cannot be redeclared, so the precondition of the design
above requires A to be different from Object . It also requires A to be a new
class name: not in the domain of Γcls . The postcondition of the design specifies
that the declaration includes A in Γcls with Object recorded as its immediate
superclass. It also specifies that no other observational variable w is modified.
In the UTP, inα(class A) is the input alphabet of the program class A, which
includes all undashed observational variables of its alphabet. For the declaration
class A extends B , we have:

class A extends B =df

⎛
⎝A �= Object ∧

A /∈ domΓcls ∧
B ∈ domΓcls

⎞
⎠ � (Γ ′

cls = Γcls ∪ {A �→ B}∧
w ′ = w

)

where w = inα(class A extends B) \ {Γcls}.
This introduces a record of class A with B as immediate superclass in Γcls . The
class B needs to have been previously declared.
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Using Γcls , we can define the subtyping relation A � B , which holds if, and
only if, both types are defined in Γcls and A is associated to B in the reflexive and
transitive closure of Γcls , or if both types are equal and primitive. The inclusion
of primitive types into the subtyping relation allows us to simplify definitions.

A � B ≡ (A ∈ domΓcls ∧ (A,B) ∈ Γ ∗
cls(| {A} |)) ∨ (A ∈ {B, Z} ∧ A = B)

Example 2. Consider again a simple banking application, with classes Account ,
which depicts an account of a bank, BAccount , an extension of Account to
hold bonus information, Contact , to hold traditional contact information, and
EContact , an extension of Contact to hold electronic contact information. The
meaning of the sequence of declarations of these classes is the design below.

class Account ;
class BAccount extends Account ;
class Contact ;
class EContact extends Contact

≡

Account �= Object ∧ Account /∈ domΓcls �
Γ ′

cls = Γcls ∪ {Account �→ Object};
BAccount �= Object ∧ BAccount /∈ domΓcls ∧ Account ∈ domΓcls �

Γ ′
cls = Γcls ∪ {BAccount �→ Account};

Contact �= Object ∧ Contact /∈ domΓcls �
Γ ′

cls = Γcls ∪ {Contact �→ Object};
EContact �= Object ∧ EContact /∈ domΓcls ∧ Contact ∈ domΓcls �

Γ ′
cls = Γcls ∪ {EContact �→ Contact}

The meaning of sequence in our theory is the same as that in the UTP.

3.2 Attributes

We can introduce attributes in Γatt for those classes already in Γcls . All attributes
are public. To introduce an attribute x of type T in class A we use the design:

att A x : T =df⎛
⎝A ∈ domΓcls∧

x /∈ dom
⋃{Γatt(N ) | N ∈ domΓatt}∧

T ∈ {B, Z} ∪ domΓcls

⎞
⎠ �

⎛
⎜⎜⎝
(

A /∈ domΓatt∧
Γ ′

att = Γatt ∪ {A �→ {x �→ T}}
)
∨(

A ∈ domΓatt∧
Γ ′

att = Γatt ⊕ {A �→ (Γatt (A) ∪ {x �→ T})}
)
⎞
⎟⎟⎠ ∧ w ′ = w

where w = inα(att A x : T ) \ {Γatt}.
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If we try to declare an attribute of a class that has not been declared previously,
with a name that was already used, or of a type that is not primitive or present
in domΓcls , the declaration fails.

We can declare several attributes simultaneously, with the obvious meaning.

att A x : T , y : U , . . . ≡ att A x : T ; att A y : U ; . . .
att A x : T ,B y : U , . . . ≡ att A x : T ; att B y : U ; . . .

Our notation allows interleaving concerning the order of class, attribute and
method declaration. For example, the sequence below is allowed.

class A; att A x : Z; class B extends A; att A y : B; att B z : A

In this case, the attribute y of the class A is declared after the declaration of the
class B . In fact, if we have recursive classes, the required order of the declaration
is different from that adopted in languages where classes are blocks. For example,
if a class A has an attribute x whose type is a subclass B of A, then the following
order of declaration is required.

class A; class B extends A; att A x : B

Transforming the class-based declarations of an object-oriented language into
an appropriate sequence of class and attribute declarations is a simple task.
For methods, similar considerations apply; mutual recursion, however, is further
discussed in the Section 6.4.

Example 3. This example adds some attributes to the classes of Example 2.

att Account id : Z, balance : Z, contact : C ;
att BAccount bonus : Z;
att Contact phone : Z;
att EContact icq : Z

≡
Account ∈ domΓcls ∧ id /∈ dom

⋃{Γatt(N ) | N ∈ domΓatt}∧
Z ∈ {B, Z} ∪ domΓcls �⎛
⎜⎜⎝
(

Account /∈ domΓatt∧
Γ ′

att = Γatt ∪ {Account �→ {id �→ Z}}
)
∨(

Account ∈ domΓatt∧
Γ ′

att = Γatt ⊕ {Account �→ (Γatt (Account) ∪ {id �→ Z})}
)
⎞
⎟⎟⎠

; Account ∈ domΓcls ∧ balance /∈ dom
⋃{Γatt (N ) | N ∈ domΓatt} ∧ . . .

We apply the design definition of attribute declaration to each element of the
sequence, starting with the attribute id , and ending with icq.

For a given class N we define C(N ) to be a mapping that records all the
attributes of N , including those declared in its superclasses. We define C(N ) in
terms of Γcls , and Γatt .

C(N ) =
⋃

Γatt (| {Γ+
cls(| {N } |) ∪ {N }} \ {Object} |)

In words, C(N ) contains all the attribute definitions of all classes related to N
by the closure of the superclass relation, and N itself.
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3.3 Methods

For a method declaration to succeed, the class to which it is associated must have
been introduced before, and all formal parameters, passed as value (val), result
(res) or value-result (valres), must have types introduced in Γcls or primitive
ones. In any case, the meaning depends on whether the method is being declared
for the first time or not. If it is (m /∈ α(meth A m = (pds • p))), then the
definition below applies. The new name m is introduced in the alphabet using a
variable declaration. The design defines the value of m.

meth A m = (pds • p) =df

var m ;(
A ∈ domΓcls∧
∀ t ∈ types(pds) • t ∈ {B, Z} ∪ domΓcls

)
�
(

m ′ = program
∧w ′ = w

)

provided m /∈ α(meth A m = (pds • p))
where program = valres self : Object ; pds • (p � self is A �⊥)
and w = inα(meth A m = (pds • p)) \ {m}.

The value of m is a parametrised program. Methods are higher-order, predicate-
valued variables as in the theory of higher-order procedures and parameters of
the UTP. The parameters of m are those in pds and an extra parameter self
to represent the target of a call; its type is Object . Just as in var x , where we
introduce in the alphabet new variables x and x ′, with meth A m, we introduce
in the alphabet the variables m and m ′. At the same time, we use a design to
define the value of m ′.

For the case of a redefinition of a method m (m ∈ α(meth A m = (pds • p))),
we have the definition below.

meth A m = (pds • p) =df⎛
⎝A ∈ domΓcls∧
∀ t ∈ types(pds) • t ∈ {B, Z} ∪ domΓcls∧
∃ q • m = valres self : Object ; pds • q

⎞
⎠ �

⎛
⎝∃ q •m = (valres self : Object ; pds • q)
∧m ′ = valres self : Object ; pds • join(A, p, q)
∧w ′ = w

⎞
⎠

provided m ∈ α(meth A m = (pds • p))
where w = inα(meth A m = (pds • p)) \ {m},
and
join(A, a,⊥) = a � self is A � ⊥
join(A, a, bl � self is B � br ) ={

a � self is A � (bl � self is B � br ), if A � B ∧ A �= B
bl � self is B � join(A, a, br ) , otherwise

It is worth emphasizing that the definition of join deals with redefinition of m
both in superclasses and in subclasses A of the class where the original definition
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is placed. The use of join allows us to introduce the method values, expressed
as (parametrised) programs [16], in a form where dynamic binding is already re-
solved, as in algebraic methods [18, 5], and in the weakest precondition approach
[15]. The special variable self denotes the instance of the target of the method
call. All references to attributes on method bodies must be prefixed with self ;
variables without this prefix are formal parameters or local variables.

If the method is a redefinition, the method signatures must be exactly the
same, and a new conditional is built to take into account the class hierarchy.
Finally, if we try to make a call to m with an object of an inappropriate type as
a target, the result is ⊥ as well. Thus, a program with invalid method calls has
unpredictable behavior.

We give the meaning of a parametrised program as a function from a value or a
variable name to a program (or predicate). We consider each of the mechanisms
of parameter passing individually; the definitions reflect the standard way of
implementing them.

For a value parameter, the semantics is a higher-order function that takes the
value of the argument and gives the program that declares the formal parameter
as a local variable and initializes it with the argument.

(val v : T • p) = (λw : T • (var v : T ; v := w ; p; end v))

A function that models a parametrised program with a parameter passed by
result takes as argument the name of a variable: an element of the syntactic
category N . This is the argument in a method call.

(res v : T • p) = (λ w : N • (var v : T ; p; w := v ; end v))

In this case, the local variable corresponding to the formal parameter is not
initialized; its value is assigned to the argument.

For a value-result parameter, the definition is as expected: the local variable
is initialized and then assigned to the argument in the end.

(valres v : T • p) = (λ w : N • (var v : T ; v := w ; p; w := v ; end v))

The parameter of the function is again a program variable. This is an abstraction
over three arguments: a variable, its dashed counterpart, and the type variable.

(λ x : N • p)(y) = p[y, y ′, yt/x , x ′, xt ]

In this case, lambda-reduction is extended to cope with variable parameters: el-
ements of the syntactic category N . This semantics for methods was presented
in [11].

Example 4. In this example we show the semantics of method declarations, con-
sidering that Γcls is the one defined in Example 2 and Γatt that defined in Exam-
ple 3. There is a method credit for Account and we redefine it for class BAccount
to increase the value of a bonus variable before executing the credit behaviour.
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meth Account credit = (val x : Z •
self.balance := self.balance + x );

meth BAccount credit = (val x : Z •
self.bonus := self.bonus + 1; self.balance := self.balance + x )

We observe that, in the body of the redefinition of credit for BAccount we have
a repetition of the code in the body of credit as defined for Account . In a pro-
gramming language, this is likely to be written as super.credit(x ) or using some
other similar notation that avoids code repetition. As we explained in Section 2,
however, semantically, these constructs can be removed using a copy rule. For
this reason, do not consider such issue here. The meaning for the two method
declarations is given by the sequence:

var credit ;(
Account ∈ domΓcls ∧ ∀ t ∈ types(val x : Z) • t ∈ {B, Z} ∪ domΓcls

)
�(

credit ′ =
(

valres self : Object ; val x : Z •
self.balance . . . � self is Account �⊥

))
;(

BAccount ∈ domΓcls ∧ ∀ t ∈ types(val x : Z) • t ∈ {B, Z} ∪ domΓcls∧
∃ q • m = (valres self : Object ; val x : Z • q)

)
�⎛
⎜⎜⎝

credit ′ = valres self : Object ; val x : Z •

join

⎛
⎝BAccount ,

(self.bonus := self.bonus + 1; . . .),(
self.balance . . . � self is Account �⊥)

⎞
⎠
⎞
⎟⎟⎠

The value associated to credit after the second design is of the following form:

valres self : Object ; val x : Z •
self.bonus . . . � self is BAccount�

(self.balance . . . � self is Account �⊥)

The conditional type test created by join selects the appropriate command.

4 Variables

In [6], type information is not explicitly recorded for the variables. In an object-
oriented language, where types play a central role, this is not appropriate. In our
theory, the values of the variables are pairs, whose first element is the (runtime)
type of the current value of the variable and the second is the value itself.

We give semantics to the construct var x : T , where T is the static (declared)
type of the variable x . The new definition for a var that declares the types of
the variables that it introduces is as follows:

var x : T =df

var x , xt ; T ∈ {B, Z,Object} ∪ domΓcls � xt ′ = T ∧ x ′ ∈ T ∧ w ′ = w

where w = inα(var x : T ) \ {x , xt}.
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We use the existing var construct to introduce both x and xt in the alphabet.
In the design, we check that T is a valid type. In this case, the type of x is
defined to be T , and an arbitrary element of T is chosen as its initial value. All
the other variables are not changed. In assignments to x , the pair (et , ev ) which
denotes the value may change, but xt does not.

To complete this definition, we need to define the set of elements of a class
type C . These are pairs in which the first element is C , and the second element
is either the special value null or a mapping (record) that associates a value to
the name of each of the attributes of C , and the values of the types determined
by the subclasses of C . A formal definition is a function that takes Γcls and Γatt

as parameters; a similar function is specified in [15].
As within the UTP, var x : T is a non-homogeneous relation: the alphabet of

var x : T does not include x or xt . The definition of end x : T (the construct
used to finalize the scope of x ) is similar to that in the UTP. There are no
concerns about type at the end of the scope of a variable, but we need to close
the scope of both x and xt .

This discussion about the structure of values is extremely important to guide
our concepts of what is an object value and how we can guarantee the correctness
of assignments, and method requests, in an OO context. This interpretation of
variables and values is not against the principles of the UTP; we have just made
explicit representation of values in order to handle the concepts of OO.

5 Expressions

In this section we specify well-definedness rules for expressions, and the semantics
of object creation, type test, type cast and attribute accesses.

5.1 Well-Definedness

Our theory includes new forms of expression e characterized by the following
BNF-like definition.

e ::= v | le | new N | e is N | (N )e | f (e) | null
le ::= x | self | le.x

Here v is a primitive or object value. The expressions le, named left expressions,
can be a variable, the special variable named self, or a sequence of dot-separated
names. The expression new N stands for object creation, e is N for type test,
and (N )e for type cast. There is also a group of built-in operations over expres-
sions, like, for instance, arithmetic and relational operators denoted by f (e).

For an expression e, we write et to denote the first element of the value of
e, and ev to denote the second element. In other words, et is the type of the
value of e, and ev is the value itself forming a pair (et , ev ). The construct null
actually stands for a family of values, one for each class. The type held by et in
this case is inferred from the context. For instance, in an assignment x := null,
et = xt . Which means that the runtime type of null is the declared type of x .
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The well-definedness of expressions is specified by a function named D. If an
expression has a primitive value, it is well-defined if the value belong to the set
of possible values of the type. For objects, we must check if the type belongs to
domΓcls , and if the value belongs to the type.

Primitive Values Objects
D((B, v)) ≡ v ∈ B D((T ,null)) ≡ T ∈ domΓcls
D((Z, v)) ≡ v ∈ Z D((T , v)) ≡ T ∈ domΓcls ∧ v ∈ T

Variables are well-defined if their types are either primitive or present in the in
domΓcls . If a variable has the special name self, it cannot be of a primitive type.

Variables
D(x ) ≡ xt ∈ {B, Z,Object} ∪ domΓcls

D(self) ≡ selft ∈ {Object} ∪ domΓcls

An attribute access le.x is valid only if le is well-defined, the value of le is
different from null and x is in the domain of le.

Attribute Accesses
D(le.x ) ≡ D(le) ∧ lev �= null ∧ x ∈ dom lev

A new N declaration is valid only if the class N is recorded in dom Γcls . The
type test and casting can be done only if e is a well-defined expression and N
belongs to domΓcls .

Typing
D(new N ) ≡ N ∈ domΓcls
D(e is N ) ≡ D(e) ∧ N ∈ domΓcls ∧ et � N
D((N )e) ≡ D(e) ∧ N ∈ domΓcls ∧ et � N

The well-definedness restrictions for built-in operations for primitive types, f (e),
are defined individually and are very similar. We show the example of the re-
mainder of a division operator, usually written ‘%’ in programming languages:

Remainder
D(x%y) ≡ D(x ) ∧D(y) ∧ xt = Z ∧ yt = Z ∧ y �= 0

In Section 6.1, we use the function D on expressions to define well-definedness
rules for commands.

5.2 Object Creation

An object value is a pair (type, value): the type is a class name and the value
is a mapping from names to attribute values. Using Γcls and Γatt to recover
attributes and inheritance information, we provide a definition for new as:
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new N ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x : domΓcls ;
t : {B, Z} ∪ domΓcls ;
v : B ∪ Z ∪ {T : domΓcls ; i : T • i }
|
(C(N )(x ) = B ∧ t = B ∧ v = false)∨
(C(N )(x ) = Z ∧ t = Z ∧ v = 0)∨
(∃T : domΓcls • C(N )(x ) = T ∧ t = T ∧ v = null)
• x �→ (t , v)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This definition says that the value of a newly created object is a mapping from
attribute names to values that associates all boolean attributes to false, all
integer attributes to 0, and all class-typed attributes to null. For example, the
value of new BAccount is:

(BAccount , {id �→ (Z, 0), balance �→ (Z, 0), contact �→ (Contact ,null)})

5.3 Type Test

The expression e is N is a boolean that indicates whether the value of e belongs
to the class N or one of its subclasses.

e is N ≡ (B, et � N )

For example:

(newBAccount) is Account ≡ (BAccount , {. . .}) is Account
≡ (B,BAccount � Account)
≡ (B, true)

This is justified by the definitions of new, type test, and �, if we assume that
Γcls is as defined in Example 2.

5.4 Type Cast

The result of a casting (N )e is the expression e itself, if the casting is well
defined. Since we are only defining the meaning of well-defined expressions, our
specification is surprisingly trivial.

(N )e ≡ e

For example, provided that BAccount � Account :

(Account) new BAccount ≡ (Account)(BAccount , {. . .})
≡ (BAccount , {. . .})

In the semantics of assignments and conditionals, we guarantee that well-defined-
ness is checked.
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5.5 Attribute Access

An attribute access le.x recovers from the object value mapping (lev ) the at-
tribute named x .

le.x ≡ lev (x )

Again, we have a very simple definition, because we are only considering well-
defined attribute accesses.

6 Commands

In addition to the commands in the theory of designs, our theory includes assign-
ments le := e of a value e to a left expression le, and method calls le.m(a) with
target le and list of arguments a. Moreover, since expressions have changed, we
need to consider well-definedness for some commands. We also consider mutual
recursion. The other commands such as sequential composition (P ; Q) remain
unchanged.

6.1 Well-Definedness

In this section, we specify well-definedness for assignments, conditionals and
method calls. We consider two cases of assignments: assignments to variables,
and assignments to object attributes. An assignment of an expression e to a
variable x is considered well-defined if x is well-defined, e is well-defined and the
type of e is a subtype of x .

Assignment to variables
D(x := e) ≡ D(x ) ∧ D(e) ∧ et � xt

For an assignment of an expression e to an attribute x of le to be well-defined,
the expression le.x must be well-defined, e must be well-defined and the type of
the expression e must be a subtype of the type of the attribute x in the class let
(C(let )(x )).

Assignment to attributes
D(le.x := e) ≡ D(le.x ) ∧D(e) ∧ et � C(let)(x )

For a conditional to be well-defined, the conditional expression must be well-
defined and yield a boolean value.

Conditional
D(P � e � Q) ≡ D(e) ∧ et = B ∧ D(P) ∧ D(Q)

The well-definedness for method calls is the most extensive rule. A method call
in the form le.m(a) is valid if:

• le is well-defined;
• the method m is defined for the type of le;
• the value of le is different from null;
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• to avoid aliasing, le is not passed as an argument and is not involved in any
argument, or as part of a variable in these parameters. For further details
about this restriction see [15];

• the types of the arguments in the list a must be compatible with the formal
parameter list of m.

We present well-definedness rules according to the parameter mechanism. Start-
ing with value parameters, we have:

D(le.m(e)) ≡ D(le) ∧ compatible(le,m) ∧ lev �= null ∧ et � T

provided ∃m, p • m = (val x : T • p),
where compatible(le,m) is the predicate:
∃ pds , p •m = (pds • p) ∧ let ∈ scan(p)

and
scan(⊥) = {}
scan(al � self is A � ar ) = {B : domΓcls | B � A} ∪ scan(ar )

The scan function yields the set of class names for which the method m can
have a definition different from abort. For result and value-result parameters we
use the function disjoint described in [15], which verifies if le is involved in any
of the arguments.

D(le.m(y))≡D(le)∧compatible(le,m)∧lev �=null∧disjoint(le, y)∧T � yt

provided ∃m, p • m = (res x : T • p)

D(le.m(z ))≡D(le)∧compatible(le,m)∧lev �=null∧disjoint(le, z )∧T =zt
provided ∃m, p • m = (valres x : T • p)

A method call with multiple arguments can be checked using combinations of
these definitions.

6.2 Assignments

Now we give the semantics for assignments to variables, and assignments to
attributes of object variables. In our theory, for assignments, we observe that
modifying the value of method variables, the type variable xt , or Γcls and Γatt

is not allowed, in much the same way that assignments to ok are not allowed in
the theory of designs.

If we establish the well-definedness of an assignment, we can update the value
of the variable with that of the expression on the right side.

x := e =df D(x := e) � x ′ = e ∧ w ′ = w

where w = inα(x := e) \ {x}.

For example, given a variable x of type Account (xt = Account), we can calculate
the meaning of the assignment x := newBAccount as follows, provided that y
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is the list of undashed variables in the alphabet, other than x , and that Γcls is
as in Example 2.

D(x := (BAccount , {. . .})) �
x ′ = (BAccount , {. . .}) ∧ y ′ = y

≡ D(x ) ∧ D((BAccount , {. . .})) ∧ BAccount � xt �
x ′ = (BAccount , {. . .}) ∧ y ′ = y

≡ xt ∈ {B, Z,Object} ∪ domΓcls ∧ BAccount ∈ domΓcls ∧ true �
x ′ = (BAccount , {. . .}) ∧ y ′ = y

≡ true �
x ′ = (BAccount , {. . .}) ∧ y ′ = y

When we have to update an attribute of an object-valued expression, we must
check the well-definedness of the assignment, and if it is valid, then we update
the mapping that records the attribute value, maintaining the left expression
type unchanged.

le.x := e =df D(le.x := e) � le ′ = (let , lev ⊕ {x �→ e}) ∧ w ′ = w

where w = inα(le.x := e) \ α(le).

We use α(le) to denote a variable in the alphabet whose value is being inspected
by the left-expression le. If le is a variable, then α(le) is the variable itself. For
x .y and x .y.z , the result is x . The equality le ′ = (let , lev ⊕ { x �→ e }) for the
case in which le is itself an attribute access y.z is an abbreviation of the equality
y ′ = (yt , yv ⊕ { z �→ y.z ⊕ { x �→ e } }).

For example, given a variable x of type Account (xt = Account), which has
been initialized with new BAccount (x = (BAccount , {id �→ (Z, 0), . . .})), we
can calculate the attribute update x .id := 1 as follows, provided that y is the
list of undashed variables in the alphabet, other than x , and that Γcls is as in
Example 2.

x .id := 1
≡ D((BAccount , {id �→ (Z, 0), . . .}).id := (Z, 1)) �

x ′ = (BAccount , {id �→ (Z, 0), . . .} ⊕ {id �→ (Z, 1)}) ∧ y ′ = y
≡ D((BAccount , {id �→ (Z, 0), . . .}).id) ∧ D((Z, 1)) ∧ Z � C(xt)(id) �

x ′ = (BAccount , {id �→ (Z, 1), . . .}) ∧ y ′ = y
≡ D((BAccount , {id �→ (Z, 0), . . .})) ∧ {id �→ (Z, 0), . . .} �= null∧
id ∈ dom{id �→ (Z, 0), . . .} ∧ true ∧ Z � Z �

x ′ = (BAccount , {id �→ (Z, 1), . . .}) ∧ y ′ = y
≡ BAccount ∈ {B, Z,Object} ∪ domΓcls ∧ true ∧ true ∧ true ∧ true �

x ′ = (BAccount , {id �→ (Z, 1), . . .}) ∧ y ′ = y
≡ true �

x ′ = (BAccount , {id �→ (Z, 1), . . .}) ∧ y ′ = y

Notice that if we had not initialized the variable x , the assignment would not be
well-defined and would abort. The same behaviour would occur if we had tried
to access the attribute bonus of the BAccount instance: since the variable has
type Account , we cannot access variables from its subclass instance.
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6.3 Conditional

We need to redefine the conditional to consider the well-definedness of the
condition.

P � e � Q =df D(P � e � Q) ∧ ((ev ∧ P) ∨ (¬ev ∧Q))

For example, suppose we have that self = (BAccount , {. . .}), the type of self is
a class, Γcls is that provided by Example 2, and both P and Q are well-defined
(D(P) ∧D(Q) = true). The conditional P � self is BAccount � Q leads to the
execution of P , as shown below.

P � self is BAccount � Q
≡ D(P � self is BAccount � Q)∧

((B, selft � BAccount)v ∧ P) ∨ (¬(B, selft � BAccount)v ∧Q))
≡ D(self is BAccount) ∧ (B, selft � BAccount)t = B ∧ D(P) ∧ D(Q)∧

((true ∧ P) ∨ (false ∧Q))
≡ D(self) ∧ BAccount ∈ domΓcls ∧ P
≡ D(self) ∧ P
≡ selft ∈ {Object} ∪ domΓcls ∧ P
≡ P

If the type test were false, the branch selected would be Q . Moreover, according
to the well-definedness rules for the variable self, it cannot be an instance of a
primitive type. If this were the case, the meaning of the conditional would be
abort.

6.4 Recursion

Basically, the meaning of recursion is as in the UTP: defined in terms of least
fixed point. Our complete lattice is that of parametrised programs, with refine-
ment as the partial order. The general form of a recursive method m of class A
is the following.

meth A m = μX • (pds • F (X )
)

For example, the factorial function could be added to A as:

meth A m = μX •
(

val n : Z; res r : Z •
r := 1 � n ≤ 0 � r := n ∗X (n − 1, r)

)

We observe that this is not in conflict with the expected form of a method
declaration, meth A m = (pds • p), since, of course, the least fixed point
operator results in a parametrised program. In particular, the parameters are
the same as those in the body of the recursion. As a matter of fact, for each
parameter declaration, we take the fixed point in the lattice of parametrised
programs with those parameters.
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Mutual recursion is easily addressed in our theory. It can be defined as:

meth A m,B n = μX ,Y • (pdsm • F (X ,Y ), pdsn • G(X ,Y )
)

In this case, since m and n are mutually recursive, they are defined together, even
though they are methods of different classes. This follows the standard approach
to the definition of mutually recursive procedures. The vector of programs m,n
is defined as the least fixed point of the function from vectors of programs to
vectors of programs defined by the bodies of m and n: pdsm • F (X ,Y ) and
pdsn • G(X ,Y ). As an example, calling the methods m or n defined below and
a variable a as arguments results in the assignment of 0 to a.

meth A m,B n = μX ,Y •(
val x : Z; res i : Z • i := x � x = 0 � Y (−x , i),
val y : Z; res j : Z • X (y − 1, j ) � x > 0 � X (y + 1, j )

)

In many theories of object-orientation, mutual recursion is a difficulty. The com-
plication is really attached to the fact that the mutually recursive methods may be
declared in an independent way in separate classes. By splitting the block structure
of a class into its basic semantic blocks, we trivially overcome this difficulty.

6.5 Method Call

The most interesting feature of this work is the resolution of a method call.
Since we have already solved dynamic binding when dealing with the semantics
of method declaration (Section 3.3), the semantics of method call is just a call
to the value of the method. In other words, we have isolated the several aspects
involved in a method call, so that dynamic binding is captured in the definition
of the value of the method variable, which holds a parametrised program, and
a method call is just a simple call to a higher-order procedure. Thus, we can
defined the method call as:

le.m(args) =df D(le.m(args)) ∧ ¬(m(le, args)[false/okay ′]) � m(le, args)

The condition ¬(m(args)[false/okay ′]) is the precondition of the design that
characterises the method call.

Suppose we start with Γcls = {} and Γatt = {}, and execute the declaration
of classes, attributes and methods in the Examples 2 and 3. Then consider the
program fragment below.

var a : Account ;
a := new BAccount ;
a.credit(10)

Due to dynamic binding, a.credit(10) must execute the body of the method
credit defined for the subclass BAccount . As described in Section 3, we have
solved this problem using a conditional test over the special variable named
self. Below, we show how the method call is expanded and how the program
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associated to variable credit resolves the dynamic binding. Due to lack of space,
we omit the precondition of a.credit(10), and calculate only credit(a, 10).

credit(a, 10)
≡{ method expansion }(

valres self : Object ; val x : Z •
self.bonus . . . � self is BAccount � (. . . � self is Account �⊥)

)
(a, 10)

≡{ semantics of valres }
var self : Object ;

self := a;(
val x : Z •
self.bonus . . . � self is BAccount � (. . . � self is Account �⊥)

)
(10);

a := self;
end self

≡{ semantics of val }
var self : Object ;

self := a;
var x : Z;

x := 10;
self.bonus . . . � self is BAccount � (. . . � self is Account �⊥);

end x ;
a := self;

end self

≡{ the conditional reduces to its left branch }
var self : Object ;

self := a;
var x : Z;

x := 10;
self.bonus := self.bonus + 1;
self.balance := self.balance + x ;

end x ;
a := self;

end self

This can be expanded to a predicate that establishes the final value of a to be
its initial value with attributes updated by assignments. The expansion of this
sequential composition is exactly the expected meaning of the method call.

7 Conclusions

We have demonstrated that object-orientation with subtyping, data inheritance
and dynamic binding can be defined in the UTP, using a theory that com-
bines designs and higher-order procedures. In particular, we have introduced two
observational variables to capture information about class declarations, extra
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variables xt and xt ′, for each programming variable x , to capture the type of
the variables, and, finally, variables m and m ′ to capture the meaning (param-
eters and body) of each method named m. In our theory, recursion and mutual
recursion are handled in a very simple way.

The concept of variable in the object-orientation context requires explicit typ-
ing information to allow the specification of well-definedness rules for expressions
and commands, and to provide the correct semantics of object-oriented expres-
sions and commands such as assignments, conditional and method calls. We have
a strong type system where all operations, and commands, over variables, values
and expressions must be checked to be considered correct. We have seen that in-
valid declarations and commands associated to OO elements lead to ⊥; in other
words, the meaning of a badly-typed program is ⊥, which has the unpredictable
behavior that we would expect.

In contrast to [7], we do not use a runtime environment; we adopt a copy
semantics, as in [15]. In the future, we intend to introduce the concept of object
sharing; we plan to include extra information about variables, and review well-
definedness, expressions and commands. With object sharing, the view of the
target of a method call as a value-result parameter, whose value is updated to
reflect changes carried out by the method, becomes unnecessary since changes
are reflected directly in the objects, not in a copy. Other features that we will
explore in the future are visibility mechanisms and exception handling.

The work reported in [19] presents a method for defining object specifications
and refinement in a predicative style [20]. The idea is to decouple the concepts
associated with general OO features, like, for instance, inheritance and class
specification. This results in very general specification constructs, of which those
usually found in object-oriented languages are a special case. Here, we also pursue
modularity and decoupling, but we only consider object-oriented constructs.

This work was our first step towards the definition of a semantics for OhCircus,
our object-oriented combination of Z and CSP. Our next concern is with the
proposal and proof of refinement laws. Afterwards, we plan to combine our theory
with that of CSP processes.
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Summary. Theories of concurrency can be distinguished by the set of 
processes that they model, and by their choice of pre-ordering relation used to 
compare processes and to prove their correctness. For example, theories based 
on CCS are often pre-ordered by simulation (or more commonly bisimulation), 
of which the main varieties are strong or weak or barbed. Theories based on 
CSP choose as their pre-order a refinement relation, defined as inclusion over 
sets of observations. The main varieties of observation are just traces, or 
failures and/or divergences. The processes of the CSP model are restricted to 
those that satisfy certain naturally arising ‘healthiness conditions’. This paper 
gives a unifying treatment of simulation and refinement, and illustrates it by the 
familiar varieties of CCS and CSP that are mentioned above.   

We consider the variations two at a time. A link between two theories is a 
function L, which maps the processes of its source theory onto those of its target 
theory. The image of L defines exactly the set of processes of the target theory. 
The ordering relation of the target theory is obtained by applying the link  L  to 
one or both operands before applying the source theory ordering.  We will use 
the normal transition rules of a structured operational semantics to define a 
series of linking functions: W for weak simulation, T for trace refinement, R for 
refusals, D for divergences. We then show that each function is a retraction, in 
the sense that it is idempotent and decreasing and (in most cases) monotonic in 
its source ordering. Finally, we show that certain compositions of these 
functions are also retractions. 

The definition of a retraction ensures that (1) the processes of the target 
theory are a subset of those of the source theory; (2) all ordering theorems of 
the source theory are preserved in the target theory; (3) the healthiness 
conditions of the target theory are expressed as fixed-point equivalences of the 
form p  Lp; (4) model-checking the target theory can be optimised, by 
applying  L to only one of the two operands of the ordering. Finally, we show 
how the separately defined retractions can be composed in a way that preserves 
these important properties. In other words, the transition systems of several 
alternative versions of CCS, as well as the main standard versions of CSP, are 
retracts of the universal transition system that underlies CCS. 

The research reported here is a step towards completion of the unfinished 
business of the original ESPRIT Basic Research Action CONCUR [BRA 3009, 
1989-92], which aimed to assimilate the theories and notations of CSP, ACP 
and CCS. A retraction is a good tool for this purpose, because it precisely 
codifies the similarities between the theories, and enables them to be used in 
combination, while preserving their essential and beneficial differences. Such 
unified families of theories may in due course serve as a rigorous foundation for 
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a comprehensive programming toolset, one that provides reliable assistance at 
all stages of program design, development, testing and evolution. In this 
working draft, some of the later sections are incomplete. 

1   Introduction 

The immediate aim of this paper is to improve our understanding of the relationship 
between some of the many varieties of process algebra which have been developed by 
researchers in the last quarter century. The primary definition of a process algebra 
may be presented in a number of different styles – for example, operational, algebraic, 
or denotational. For a mature calculus, there will usually be several consistent or even 
equivalent presentations, which can include sections classified under the following 
headings:   

1. an edge-labelled graph, known as a transition system; its nodes are the states of 
a process, and the arcs are labelled with the kind of observation made as a 
process passes from its source to its target; 

2. a pre-order (i.e., a reflexive transitive relation) over the nodes of the graph;  It 
expresses some useful notion of conformity, refinement, approximation or 
equivalence of processes; 

3. a signature of constants and operators used to describe process behaviour;  all 
processes of the theory are denoted by a term that is constructed by repeated 
application of the operators to the constants; 

4. an operational semantics, presented in the form of a set of transition rules 
relating the terms of the language to the nodes in the graph by consideration of 
the labels on their outgoing edges; the transition rules describe in an abstract 
machine-independent way how the language can be implemented; 

5. a set of algebraic equations over terms of the language; they define a structural 
equivalence relation, by which the term model for the language may be 
quotiented;  

6. a specification language for describing properties of processes, including their 
criterion of correctness; 

7. a deductive system for proving the conformity of processes to their specifications. 

Nearly all process algebras are based on the first two headings, a transition system 
and a pre-order. Various classes of algebra give differing emphases to the other 
headings. CCS [14] and its successors express their definitive semantics by a 
signature and an operational semantics.  The underlying transition system is assumed 
to be universal, in the sense that it contains a sub-graph isomorphic to the whole of 
every other transition system. The commonly adopted pre-order is bisimulation, 
which is in fact an equivalence relation. The modal -calculus [8] provides a 
specification language, and the deductive system is provided by the satisfaction rules 
for this modal logic. The various versions of ACP [4] start by a statement of a 
signature for process terms, accompanied by a set of algebraic postulates; an 
operational semantics is then proved consistent with these postulates. The other 
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calculi have to prove their algebraic laws as theorems. The π-calculus [15] is 
presented by a combination of algebraic postulates together with an operational 
semantics; a number of sitable pre-orders have been proposed. The original CSP [3] 
and its derivatives start with the simple standard mathematics of sets and sequences.  
This serves as a specification language, and permits a denotational definition of the 
concept of a process as a set which satisfies certain healthiness conditions. The 
constants and operators of the calculus are given direct mathematical definitions.  
Conformity of a process to an arbitrary specification is identified with inclusion of 
sets of sequences of observations (known as traces): no special deductive system is 
needed, because normal mathematics is the basis of all proofs.   

Since our goal is to find links between theories of all these classes, we concentrate 
on what they have in common, namely the first two headings, a transition system and 
a pre-ordering relation. For the same reason, our development starts with the universal 
transition system of CCS. It is universal in the sense that every other transition system 
can be mapped (isomorphically up to bisimulation) onto a subset of its objects and 
transitions. Finally, we select as our initial pre-order the CCS concept of strong 
simulation (denoted  ). Equivalence of processes (denoted by  ) is defined in this 
paper as mutual simulation (known also as observational equivalence). The familiar 
deficiencies of simulation as a notion of correctness is resolved by introduction of a 
well-chosen notion of tests or barbs. 

In section 3 we will show how a particular theory of concurrency can be defined as a 
subset of another by means of a function  L (for link). It maps the nodes of the source 
theory surjectively onto the nodes of the target theory. Furthermore, the pre-order of the 
target theory is defined, as in [6], by applying  L to the two processes of the source 
theory, and using the pre-order of the source theory to compare them.  More formally, 
Lp  and  Lq  are ordered in the target theory if and only if  p  and  q  are ordered in the 
source theory.  Since the source theory uses simulation as its pre-order, the pre-orders of 
all the linked theories can be efficiently model-checked by the same standard algorithm; 
such a facility is now part of the Concurrency Workbench [5].  

In section 4, we explore some of the desirable properties of the link L. The first and 
most desirable property is that it should be idempotent, in the sense that applying it 
twice is equivalent to applying it just once. Secondly it should be monotonic, in the 
sense that it preserves the source ordering. Thirdly, it should be decreasing, in the 
sense that its result is always lower in the source ordering than its argument. A 
function that has all these three properties is called a retraction. It turns out that an 
ordering defined by a retraction permits a more efficient mechanical test; this fact has 
been industrially exploited in the model-checking algorithm of FDR [20]. 

The claim of our title that CSP is a retract of CCS applies only to representative 
samples of the two process calculi: 

1. the trace model of CSP (with τ recorded) is a retract of CCS modulo strong 
simulation, by a retraction  T (section 5.1); 

2. CCS modulo weak simulation is a retract of CCS modulo strong simulation, by 
a retraction W (Section 5.2); 

3. the trace model of CSP (with τ omitted) is a retract of CCS modulo weak 
simulation, by a retraction (W ; T ) (Section 5.3); 
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4. CCS modulo refusal-barbed simulation is a retract of CCS modulo two-thirds 
simulation, by a retraction R (Section 6.1); 

5. CCS modulo divergence-barbed simulation is a retract of CCS modulo strong 
simulation, by a retraction D (Section 6.2). 

The long-term goal of the research reported in this paper is to contribute to unifying 
theories of concurrent programming [10]. The effort will be successful only if it helps 
in revealing the distinctive merits of each theory, permitting them to be exploited in 
combination, ideally with the aid of a coherent suite of mechanical tools. There is no 
intention or desire that any one of the theories should dominate or supersede any of 
the others.   

2   Background  

We start with the usual definition of a labelled transition system as 

a set  P  of processes:     nil, p, q, Lp,… 
a set  A  of observations:     a, b, … 

including communications:     x, y, ... 
and hidden symbols:      τ , σ , ... 
and barbs, which have special meanings:  ref (X), , … 

a transition relation  T  ⊆  P × A × P 

The fact that (p,a,q) ∈ T means that a process in state  p can make a transition to state  
q, and simultaneously admit or emit the observation a. As usual, we will implicitly 
work in the single fixed labeled transition system of CCS. Other transition systems for 
other theories will be defined as subsets of the processes of this universal system.  

We will exploit infix relational notation, and define 

⎯⎯→⎯ ><a    ≅   {(p,q) | (p,a,q)  ∈  T} 

We use the identity relation (Id), forward relational composition (;), the universal 
relation (U = P×P ), relational union (∪), relational converse (superscript ∪) and 
inclusion (⊆);  we appeal without mention to the familiar algebraic properties of the 
relational calculus: unit laws, associativity, monotonicity, distribution through union. 

The concept of an observation extends to sequences of none or more observations, 
denoted by  s, t,… ∈  A*.  The following definitions are standard: 

p ⎯→⎯ε  q ≅     p = q 

   p ⎯⎯ →⎯ >< sa  r  ≅     p ( ⎯⎯→⎯ ><a   ;  ⎯→⎯s  ) r 

 p ⎯→⎯s _ ≅    ∃q .  p ⎯→⎯s  q 

           traces(p)     ≅     { s | p  ⎯→⎯s _ } 

Simulation is defined co-inductively as the weakest solution of a set of equations. 
(For bisimulation, R must be symmetric – but we shall not be using bisimulation in 
this paper): 
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   is the weakest relation  R  ⊆  P×P  such that 

∀a : A  .    R ; ⎯⎯→⎯ ><a      ⊆      ⎯⎯→⎯ ><a  ;  R 

An important practical advantage in the choice of simulation as the standard pre-
order for a theory of concurrency is that its definition describes abstractly but 
exactly the algorithm for an efficient model checker; model checking can be used 
automatically to disprove false conjectures in the theory, and often also to prove 
true ones. 

Theorem 2.1.  is a pre-order. 

Proof: (for reflexivity): Id (the identity relation on processes) satisfies the equations 
that define simulation. It is therefore included in the weakest such relation, or more 
formally,  Id  ⊆     .  That is just the relational definition of reflexivity. 

 (for transitivity):  similarly,  (   ;   ) is included in    . 

Lemma 2.1.     ∀s : A*  .      ; ⎯→⎯s       ⊆      ⎯→⎯s  ;  

Proof: By induction on the length of  s. 

CSP refinement can be defined in the same style as simulation:  

    is the weakest relation R  ⊆  P×P  such that 

∀s : A*  .    R ;  ⎯→⎯s  ; U     ⊆      ⎯→⎯s  ; U 

Theorem 2.2.  is a pre-order. 

Proof: Similar to the above. 

Theorem 2.3.             ⊆       

Proof: By the preceding Lemma, a trivial proof in the relational calculus shows that   
satisfies the defining equation for . 

We would like to confirm that   satisfies its own defining property: 

Lemma 2.2.      ; ⎯→⎯s  ; U       ⊆      ⎯→⎯s  ; U  

Proof:   is the union of all solutions.  Composition distributes through union. 

Even more important is a proof that   coincides with the usual trace refinement: 

Theorem 2.4.     p  q     ⇔        traces(q)  ⊆   traces(p) 
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Proof:     RHS 

                  traces(q) ⊆ traces(p)   

⇔                q ⎯→⎯s _  p ⎯→⎯s _  , ∀s∈A*     {by defn  traces} 

⇔          {(p, q)} ; ⎯→⎯s  ; U ⊆ ⎯→⎯s  ; U                              {rewriting} 

                    {(p, q)} ⊆               {by defn } 

⇔                              p  q                {rewriting} 

              q ⎯→⎯s _ ⊆ p ⎯→⎯s _  , ∀s∈A*     {by prev. lemma} 
⇔                  traces(q) ⊆ traces(p)       {by defn  traces} 

3   Functions Defined by Transition Rules 

A new function symbol L can be introduced into a process algebra by transition rules 
of the form 

               p  (fa)  q 
------------------ 

        Lp ⎯⎯→⎯ ><a  Lq 

where fa is a relation defined in terms of the observation a. By suitable definition of 
the relation fa, a multiplicity of transition rules defining the same symbol L can often 
be reduced to a single rule of the form shown above.   

L is intended to be a syntactic operator on expressions denoting processes. It is 
therefore an injection, i.e., a total invertible function. The image of L is a region of the 
source transition system which constitutes the transition system of the target theory of 
concurrency. This region will contain an edge labelled a if and only if the existence of 
that edge can be deduced from this single transition rule displayed above.  

Relational notation can be used to express and prove the properties of functions, by 
defining pLq and qL∪p both to mean q = Lp. The fact that L is an injection can be 
expressed relationally: 

because L is single-valued:    L∪ ; L    ⊆    Id 
because L is a total many-one function: L ; L∪    =    Id                        ……{L inj.} 

At the start of this section we defined the function L by means of a single transition 
rule. Recall that the rule defines exactly the set of all transitions involving L that can be 
deduced from it.  As a result, the single transition rule can be read as an equivalence: 

       p (fa) q ⇔ Lp ⎯⎯→⎯ ><a Lq 

Because all transitions deducible by the single rule lead from the image of  L  to the 
range of  L , two further equivalences may be derived from the same rule:  

        Lp ⎯⎯→⎯ ><a r   ⇔  ∃q.  r = Lq ∧   p (fa) q 

        r ⎯⎯→⎯ ><a Lq   ⇔ ∃p.  r = Lp ∧   p (fa) q 
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All three equivalences can be neatly coded in the relational calculus: 

                   fa        =       L ; ⎯→⎯a  ; L∪ 

 L ; ⎯⎯→⎯ ><a  =       fa ; L 

           ⎯⎯→⎯ ><a  ; L∪     =      L∪ ; fa                                    …   ….{L commut.} 

An immediate consequence is a useful commuting law for  (L ;   ) : 

Lemma 3.1.     (L ;   ) ; ⎯→⎯a       ⊆       fa ; (L ;   )          ........{L ;    commut.} 

This property can be strengthened to a co-inductive characterisation of  L ;  , as 
follows: 

Theorem 3.1. L ;     is the weakest relation  R  ⊆  P×P  such that       

∀a : A  .     R ;  ⎯⎯→⎯ ><a        ⊆         fa ; R 

Proof: Let  R  satisfy the commuting property quoted in the theorem.    

    L∪ ; R ;  ⎯⎯→⎯ ><a   ⊆      L∪ ; fa ; R    =    ⎯⎯→⎯ ><a  ; L∪ ; R        {L commut.} 

              L∪ ; R      ⊆                               {defn   } 
        L ; L∪ ; R    ⊆      L ;                {L inj.} 
                         L ;    is weaker than  R. 
                L ;    has the relevant commuting property                {Lemma 3.1}  

Being weaker than an arbitrary  R ,  (L ;  )  is the weakest such commuting relation.  

Let L be a function from processes to processes.  A new ordering on processes can 
be defined by applying L to both operands of the source ordering: 

p    L    q       ≅   Lp       Lq  ,  all  p , q 

An algebraic presentation of the same definition is 

 L        ≅   L ;   ; L∪ 

Lemma 3.2.   L   is a pre-order. 

Proof:    (  L  reflexive)      Id      ⊆      L ; L∪     ⊆      L ;    ; L∪            {  L  transitive} 
  ( L ;    ; L∪ ) ; ( L ;    ; L∪ )     ⊆      L ;     ;   ;  L∪                             {L  inj.} 
              ⊆      L  ;     ;  L∪       

The following theorem gives a co-inductive characterisation of this pre-order. 

Theorem 3.2.  L    is the weakest relation  R  ⊆  P × P such that 

∀a : A  .     R ; fa    ⊆     fa ; R 
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Proof: Similar to Theorem 3.1. 

The same definition and lemma apply to refinement ordering. 

L           ≅        L ;  ; L∪ 

4   Retractions 

In this section we discuss the desirable properties of the ordering  L of the target 
theory, and relate them to desirable properties of  the function  L.   

Monotonicity. First, we would like  L to be uniformly weaker than standard 
simulation, so that all the simulations provable in  CCS will still be valid for the new 
theory as well, and the new calculus will be a member of the CCS family. This is just 
the condition that L should be monotonic in the source ordering, which can be 
expressed relationally in two ways: 

        ⊆         L    
    ; L  ⊆        L ;                {L mon.} 

Monotonicity can be proved easily by from the definition of L , using the defining 
relation fa, as described in section 3. The theorem follows the spirit of the congruence 
rules given in [9]. 

Theorem 4.1.    L is monotonic if         ; fa    ⊆    fa ;    ,      all a 

Proof:    L∪ ;   ; L  ;  ⎯⎯→⎯ ><a    =       L∪ ;   ; fa ; L     {L  commut.} 
    ⊆      L∪ ; fa ;   ; L           {proviso} 

    =      ⎯⎯→⎯ ><a  ; L∪ ;  ; L      {L  commut.} 
Hence               L∪ ;   ; L   ⊆         ,  
from which                 ; L     ⊆       L ;              {by L inj.} 

Decrease. The simulation ordering  p  q can reasonably be interpreted as a statement 
that p is a more general or more abstract description of the behaviour of q. For 
example, p may be a specification, expressing abstractly the desirable general 
properties of a system, and q may be a more detailed description of the behaviour of 
the system implementation  The relationship p  q then states that the implementation 
meets its specification.  

If we are going to use the target theory for specifications, it is desirable that it 
should be in principle more abstract than the source theory.  In particular, we would 
like every target process Lp to be a more abstract description of the source process p:  

     Lp              p   

This has two equivalent more algebraic formulations 

    L∪ ⊆        
     ⊆       L ;            ......{L dec.} 
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Theorem 4.2.        L is decreasing if     ⎯⎯→⎯ ><a  ; L    ⊆     L ; ⎯⎯→⎯ ><a  ,    all a 

  (or equivalently, if    L∪ ; ⎯⎯→⎯ ><a    ⊆     ⎯⎯→⎯ ><a  ; L∪  ) 

Proof:  L∪  ; ⎯⎯→⎯ ><a  ; L  ; L∪ ⊆        L∪ ;  L ; ⎯⎯→⎯ ><a  ; L∪                            {proviso} 

                L∪ ; ⎯⎯→⎯ ><a     ⊆       ⎯⎯→⎯ ><a  ; L∪                          {L  inj.} 
         L∪   ⊆                  {defn of simulation} 

Idempotence. The processes of our new calculus will be defined as just the image of 
the function L . We would like to ensure that over the image of  L ,  L  has the same 
meaning as  . This is obviously desirable, simply as a unification of the theories in 
question.  But it also has practical value. One or both of the operands of   are often 
expressed in the notations of the target calculus, and these can be proved in advance 
to remain in the image of L . For such operands there is no need to apply the function  
L  before model-checking.  This desirable property is defined formally: 

                p (L ;   ; L∪ ) q        iff       p    q ,             for all p , q  in the image of  L 
i.e.,     L ; L ;   ;  L∪ ; L∪           =        L ;   ; L∪  

It is simpler to state a slightly stronger requirement, that L is an idempotent function, 
in that applying it twice is observationally equivalent to applying it just once. (Note 
that this is not true idempotence, but only idempotence up to equivalence): 

             L(Lp)        Lp 
i.e.,        L ; L ;   =       L ;          ... .{L  idem.} 

If L is already known to be decreasing, idempotence can be proved simply by 

Lp         L(Lp) 

A desirable consequence of idempotence is that the image of L is just the same as 
its fixed points; as a result, the processes of the new theory are just those processes of 
the source theory that satisfy the healthiness condition that 

Lp         p 

Another desirable consequence of idempotence of a decreasing function L is that it 
maps each p of the source theory to the strongest process in the target theory that 
approximates  p. 

Theorem 4.3.    Decreasing  L  is idempotent if   L ; fa    ⊆     fa ; L ,  all a 

  (or equivalently,  if     ⎯⎯→⎯ ><a ; L∪     ⊆     L∪ ; ⎯⎯→⎯ ><a  ) 

Proof:     L∪ ; L ; L ; ⎯⎯→⎯ ><a   ⊆        L∪ ; L ; fa ; L     {L  commut.} 
         ⊆        L∪ ; fa ; L ; L           {proviso} 

    ⊆       ⎯⎯→⎯ ><a ; L∪ ; L ; L    {L  commut.} 

Retraction. A retraction is defined as a function that is monotonic, decreasing and 
idempotent.  In summary, a retraction L satisfies the three inequations 
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         ⊆        L ;                           ..... {dec.} 
  ; L   ⊆        L ;                          ..... {mon.} 

                  L ; L ;        ⊆        L ;                           ..... {idem.} 

Efficiency.  To test the relation   L  by model checking  it is generally necessary to 
pre-process both operands in advance, by application of the function L. It would 
obviously be more efficient to apply L to only one of the operands, and still be sure of 
getting the same result of the test. Preferably, it is the specification that should be 
processed, because specifications are in general simpler than their implementations. 

In order to validate this optimisation, it is obviously essential that the meaning of 
the optimised ordering should be the same as the original: 

L ;    =         L    

Surprisingly, a function is efficient if and only if it is a retraction, as shown by the 
following theorems. 

Theorem 4.4.  L is a retraction    iff    L ;    is a pre-order. 

Proof: Assume that  L ;    is a pre-order. 

{L dec}    ⊆ L ;   ;                              {L ;   reflexive} 
   ⊆ L ;                                 {   is transitive} 
{L mon}           ;  L ⊆ L ;   ; L                     {just proved} 
       ⊆ L ;   ; L ;                    {   reflexive} 
   ⊆ L ;                             {L ;   transitive} 
{L idem}     L ; L ;  ⊆ L ;   ; L ;                                 {   reflexive} 
   ⊆ L ;                            {L ;   transitive} 

Now assume that  L  is a retraction. 

{L ;    refl}  Id ⊆                    {   reflexive} 
    ⊆ L ;                           {L  dec.} 
{L ;    trans} L ;    ; L ;      ⊆ L ; L ;    ;                           {L mon.} 
    ⊆ L ;    ;                         {L  idem.} 
    ⊆ L ;                          {   trans.} 

Theorem 4.5.    L is a retraction    iff    L ;       =    L ;    ;  L∪ 

Proof: ( ⇐ ):  trivially by the preceding theorem, because  L ;    ;  L∪   is a pre-order. 

( ):     L ;    ;  L∪ ⊆ L ;    ;                          {L dec.} 
= L ;       

           L ;         ⊆   L ;    ; L ; L∪                     {L inj.} 
⊆  L ; L  ;    ; L∪                     {L mon.} 

   ⊆ L ;    ;  L∪                  {L idem.} 
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5   Simulation and Refinement 

In this section, we will prove the basic retraction property of the traces model of CSP. 
In the first subsection we will deal with strong simulation, by assuming that the 
hidden symbol  is either absent, or treated in the same way as all other symbols. 
In the second subsection we will define weak simulation, and show how its retract 
gives the standard trace model of CSP, in which  is effectively removed from all the 
traces.  The effect of removal is actually achieved by saturating the transition system 
with -transitions. 

5.1   Trace Refinement and Strong Simulation 

Let s be a trace of the process p. Suppose p has already engaged in all the actions 
recorded in s. Then the possible future behaviour of p is denoted by  s p, the s-
derivative of p; it is pronounced ‘p after s’. The process  s p can perform an action a 
just if the process p can perform the sequence of actions s <a>. After this action a has 
happened, subsequent behaviour is of course described by  s<a> p.  

p  ⎯⎯ →⎯ ><as _ ⇔   s p ⎯⎯→⎯ ><a   s <a> p 

This equivalence is a consequence of a family of transition rules, parameterised by s  

          p ⎯⎯ →⎯ ><as _ 
 ------------------------  ----                 {defn  s} 

  s p ⎯⎯→⎯ ><a   s <a> p 

As usual,  s p is taken to be the solution of these equivalences that has the minimal 
number of transitions. It has no transitions at all in the case that s is not a trace of p.  
This case is of no interest to us, and we shall take care to avoid it. 

Because the rule given above is the only way of deriving an  ⎯⎯→⎯ ><a   transition  
for  s p  

 s p ⎯⎯→⎯ ><a r     ⇔      p ⎯⎯ →⎯ ><as _   ∧    r   =   s <a> p              {  s det.} 

By existentially quantifying  r  on both sides, we get 

 s p ⎯⎯→⎯ ><a _     ⇔     p ⎯⎯ →⎯ ><as _ 

We would like to generalise this property to longer traces than just  <a>.  

Theorem 5.1.1.  p ⎯→⎯st _      ⇔       p ⎯→⎯s _    ∧     s p  ⎯→⎯t _  

Proof: By induction on  t:  

 p ⎯→⎯ εs _      ⇔      p ⎯→⎯s _      

                          ⇔      p ⎯→⎯s _  ∧   s p ⎯→⎯ε _     {added clause is true} 
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The induction hypothesis can be specialised by substituting  s<a>  for s : 

 p ⎯⎯ →⎯ >< tas _     

⇔ p ⎯⎯ →⎯ ><as _  ∧    s<a> p  ⎯→⎯t _          {ind. hyp.} 

⇔ p ⎯⎯ →⎯ ><as _  ∧    s p ⎯⎯→⎯ ><a   s<a> p  ∧    s<a> p ⎯→⎯t _     {defn  s} 

 p ⎯→⎯s _   ∧    s p ⎯⎯ →⎯ >< ta _                           {defn  ; } 

  s p ⎯⎯→⎯ ><a   s<a> p  ∧    s<a> p  ⎯→⎯t _            {  s det.} 

 p ⎯⎯ →⎯ ><as _  ∧    s<a> p  ⎯→⎯t _                         {defn  s} 

⇔ p ⎯⎯ →⎯ >< tas _                          {ind. hyp.} 

To simplify the statement and use of this theorem, we define a partial functional 
relation  Hs  that excludes the uninteresting case:  

p Hs q        ≅       p ⎯→⎯s _   ∧    q  =   s p   

The theorem proved above can now be given an algebraic formulation:  

Theorem 5.1.2.  ⎯→⎯ ts
 ; U       =       Hs  ; ⎯→⎯t  ; U            .....{Hsintro.} 

Corollary.  p ⎯→⎯s _              traces(  s p )   =   {t | st  ∈  traces(p)} 

The corollary expresses the intuitive trace definition of the derivative that is given by 
CSP. 

Theorem 5.1.3.              ; ⎯→⎯s  ⊆      Hs ;             .....{Hscomm.} 

Proof: p LHS  q  

⇔      p   v  ∧    v ⎯→⎯s  q ,  for some  v 

      traces(v) ⊆  traces(p)  ∧    traces(q) ⊆  { t | st ∈  traces(v)}  ∧   p ⎯→⎯s _   
     traces(  s p ) =    { t | st  ∈  traces(p)} 

⊇ { t | st ∈  traces(v)} 
⊇ traces(q)   

     p Hs (  s p)  ∧     s p  q 
     p  RHS  q 

Although  a(p)  describes the behaviour of  p after it has done  a , there is no 
guarantee that p itself can actually make an  a-transition to a(p).  In the general 
transition system of CCS, each a-transition of p may simultaneously make an internal 
commitment preventing it from behaving henceforth with the full generality of a(p), 
as shown in the left diagram of Figure 1.However, in all models of CSP, a guarantee 
of the existence of such an a-transition is given. This is displayed in the right diagram 
of Figure 1, which shows the corresponding CSP process in the trace model. To map 
CCS to CSP, we define a retraction T, which supplies the missing a-transitions when 
necessary.  Henceforth we will use Ha in place of H<a> . 
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        p  Ha  q        
--------------------- 

Tp  ⎯⎯→⎯ ><a   Tq   

From these we get the standard commuting laws 

 T ; ⎯⎯→⎯ ><a   =        Ha  ;  T 

           ⎯⎯→⎯ ><a  ; T ∪  =        T ∪ ; Ha            {T commut.} 

Theorem 5.1.4.    T ; ⎯→⎯s  ; U       =       ⎯→⎯s ; U 

Proof: By induction on  s  :   

T ; ⎯→⎯ε ; U    =   U   =      ⎯→⎯ε ; U               T and  ⎯→⎯ε are total relations} 

T ; ⎯⎯ →⎯ >< sa  ; U     =       Ha  ;  T ; ⎯→⎯s  ; U       {T commut.} 

=        Ha  ;  ⎯→⎯s ; U          {ind. hyp.} 

   =        ⎯⎯ →⎯ >< sa  ; U          {Hs  intro.} 

Corollaries.             T  ⊆                             {defn  } 

            T ;   ⊆        
            T ;   ⊆                                   {because    ⊆   } 

Theorem 5.1.5.       T∪  ⊆          

Proof: T∪ ; ⎯→⎯s  ; U   =      T∪ ;  T ; ⎯→⎯s  ; U                         {Theorem 5.1.4} 

  ⊆      ⎯→⎯s  ; U                            {T  inj.} 

Corollaries.      ; T∪  ⊆                           {   trans.} 
     traces(p)     =        traces(Tp)                               {Theorem 2.3} 

Theorem 5.1.6.          T∪ ;    ⊆        

Proof:    T∪ ;  ; ⎯⎯→⎯ ><a      ⊆  T∪ ; Ha ;                             {Hacomm.} 

          =   ⎯⎯→⎯ ><a  ; T∪ ;                {T commut.} 

Corollary.          ⊆        T ;  

Theorem 5.1.7.      T ;    =                    {from previous corollaries} 

Corollary.       T is a retraction                   {Theorem 4.4, since  is an order} 

Note that this proof has not used Theorems 4.1 to 4.3, which are not applicable to the 
transition rule that defines T. 
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It follows that the trace model of CSP is a retract of CCS modulo strong simulation. 
It remains to explore the other models of CSP in relationship with other orderings over 
CCS; these orderings give special roles to hidden symbols and to barbs. 

b c b 

aa

b c 

a

CCS CSP (traces)  

Fig. 1 

5.2   Weak Simulation   

The special symbol τ is intended to stand for an event that is internal to a process; its 
occurrence or non-occurrence is not observable from outside. So any number of 
occurrences of τ are indistinguishable from any other number – even none. Furthermore, 
any observable event may be preceded or followed by any number of occurrences of τ. 
These intentions are encoded in the following definition of a weak transition in CCS 
(for convenience, slightly different from the familiar definition): 

= τ =>     ≅       ( ⎯⎯→⎯ ><τ
)* 

= a =>      ≅       ( ⎯⎯→⎯ ><τ
)* ; ⎯⎯→⎯ ><a

 ; ( ⎯⎯→⎯ ><τ
)* ,          if  a ≠ τ 

We define a retraction W which turns weak transitions of the source theory into 
ordinary strong transitions of the target theory.  It thereby allows an implementation 
to optimise responsiveness by proceeding more directly to the next visible action, 
omitting any or all of the hidden actions which precede it or follow it. 

      p  = a =>  q 
--------------------- 

Wp ⎯⎯→⎯ ><a
 Wq 

In Figure 2, the right diagram shows a fragment of the target theory on the right;  it 
is derived from the fragment of the source theory on the left. The right diagram also 
contains a τ-loop on every node. 

Theorem 5.2.1.  W  is a retraction.  
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τ

a 

τ τ

a 

τ

a 

a 

after W 

a 

τ

before W  

Fig. 2 

Proof: By Theorems 4.1 to 4.3, it suffices to prove the following lemmas: 

(mon)        ; = a =>    ⊆        = a => ;                    {induction on def simulation} 

(dec) ⎯⎯→⎯ ><a
 ; L       ⊆        = a => ; L             {because ⎯⎯→⎯ ><a

   ⊆   = a =>} 

=        L ; ⎯⎯→⎯ ><a
                                            {L commut.} 

(idem)      L ; = a =>  ⊆        ( ⎯⎯→⎯ ><τ
)* ; = a => ;  ( ⎯⎯→⎯ ><τ

)* ; L 
                              {induction on L commut.} 

=        = a = > ; L  

   { = a =>   =   ( ⎯⎯→⎯ ><τ
)* ; = a => ;    ( ⎯⎯→⎯ ><τ

)* } 

By Theorem 3.1, (W ;   ) is the weakest relation satisfying the inequation  

    (W ;   ) ; ⎯⎯→⎯ ><a
 ⊆        = a => ; (W ;   )             {W ;    commut.} 

This is essentially the standard co-inductive definition of weak simulation (expressed 
in a single clause, rather than separating the case that  a  =  τ ).  We therefore claim 
that weak simulation is the same as    W , which is of course the same as (W ;  ).  We 
conclude that CCS modulo weak simulation is a retract ( by W ) of CCS modulo 
strong simulation. 

Our next claim will be that  w expresses exactly the CSP notion of trace inclusion, 
where all occurrences of  the hidden symbol τ are removed from the traces on both 
sides.  We define by induction a minus operator which effects this removal, and lift 
the definition to sets in two ways: 
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(< >) –  = < > 
(<τ> t) – =  t – 
(<a> t) – = <a> ( t )     
S –  ≅ { s | s –  ∈  S} 
S+  ≅ { s | s –  ∈  S – } 

Note that  +  and  –  are monotonic with respect to set inclusion, +  is increasing, and  

 S++   =       (S –)+  =    S+     

S –   =        (S+) –  =    S –   

The function traces(p)–  gives the normal CSP traces of a process p, with all 
occurrences of τ removed.  The function traces(p)+ inserts τ arbitrarily often into 
these reduced traces. It does not matter which of these functions is used to model CSP 
refinement, because of the simple property that 

 
Lemma 5.2.1.        S –    ⊆     T –       iff        S+   ⊆    T+ 

 
Proof: Properties of  +  and   – , operating on sets. 

 
The following lemma shows that the traces of Wp are closed with respect addition or 
removal of τ :   

Lemma 5.2.2.       W ; ⎯→⎯−t
 ; U       = W ; ⎯→⎯t

 ; U 

Proof:       W  ; ⎯⎯ →⎯ >< tτ
 ; U   =        W ; ⎯→⎯t

 ; U             {induction on  t} 

   W  ; ⎯⎯ →⎯ >< ts τ
 ; U   =       W ; ⎯→⎯ ts

 ; U                  {induction on  s} 

The result follows by induction on the number of  τ  in  t. 
 

Lemma 5.2.3.          s  ∈ traces(q)+ iff q  = s– => _ 
 

Proof:   s  ∈  traces(q)+       ⇔     s –   ∈  traces(q) –                                     {defn  +} 

         q ⎯→⎯t
 _              for some t  satisfying  t –   =  s  

         q  = s–  =>_        
   since  t is just  (s–)  interleaved with  τ s  

            s   ∈   traces(q)+ 
since  s  is just  (s–)  interleaved with  τ s 

Theorem 5.2.2.         traces(Wq)   =       traces(q)+  

Proof:    s  ∈  RHS  ⇔  q  = s– =>_                {Lemma 5.2.3} 

   ⇔ Wq ⎯→⎯−s
_                                      {defn  W} 

   ⇔ Wq ⎯→⎯s
_                {Lemma 5.2.2} 

   ⇔ s   ∈    traces(Wq)   
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Theorem 5.2.3.          p w  q     iff   traces(q) –   ⊆   traces(p) –    

Proof: Lemma 5.2.1 and Theorem 5.2.2 . 

This confirms that  w  corresponds to the familiar CSP concept  of  τ-hidden trace 
inclusion. We now proceed to relate it to weak simulation. 

Lemma 5.2.4.       T ;  w    =       w     
   

Proof: traces(W(Tq))    = traces(Tq)+                                   {Theorem 5.2.2} 
                    = traces(q)+                     {Theorem 5.1.5 corollary} 
       = traces(Wq)                           {Theorem 5.2.2} 
 

Lemma 5.2.5.     W ; w       =        w     
 

Proof: LHS = W  ; W  ; T ;    ; W∪                      {defn w } 
  ⊆ W  ; W ;    ; T ;    ; W∪                   {   reflexive} 
  = W  ;    ; T ;    ; W∪             {W  idempotent} 
  ⊆ W ;  T ;    ;    ; W∪                        {T monotonic} 

= RHS 
⊆ W ;   ; T ;    ; W∪ 
⊆ W ; W ;    ; T ;    ; W∪                    {W  idempotent} 
⊆ W ; W ; T ;    ;    ; W∪                        {T monotonic} 
= LHS 

The following theorem shows that τ-hidden trace refinement is a retract of weak 
simulation. 

 

Theorem 5.2.4.       w   =      W ; T ;    w   
 

Proof: w   = W ;  ; W∪                      {definition} 
  = W ; (T ;   ) ; W∪                    {Theorem 5.1.7} 
  ⊆ W ; T ; (W ;   ) ; W∪                      {     ⊆   W ;  } 
  = RHS               {definition    w } 

  ⊆ W ; T ; w                    {      ⊆      } 

  = w                                                {Lemmas 5.2.4 and 5.2.5} 
 

Corollary. W ; T   is a retraction wrto    w .                        { w is a pre-order} 
 

The next and final theorem of this section shows the efficient way of computing trace 
refinement in CSP by model-checking. 

 

Theorem 5.2.5.      w  =       W  ;  T  ;      

Proof:     LHS     =  W ; T ;    ;  T∪ ; W∪                     {definition} 
⊆  RHS                  {T and W dec.} 



 CSP is a Retract of CCS 55 

 

         p RHS q     ⇔   traces(q)   ⊆    traces(Wp)            {Theorem 5.1.7} 
      ⇔  traces(q)   ⊆    traces(p)+                    {Lemma 5.2.3} 
        traces(q)+   ⊆     traces(p)++                         {+  mon.} 
      ⇔  traces(Wq)   ⊆     traces(Wp)              {Lemma 5.2.3} 

    ⇔  p  LHS  q 

Corollary. W ; T   is a retraction wrto    .                              {Theorem 4.4} 

We conclude that CSP modulo τ-hidden trace refinement is a retract (by W ; T ) of 
CCS modulo either weak simulation or strong simulation. 

6   Barbs 

A barb is an event which represents an observation of the current state of a process.  It 
is effectively inserted into a transition system by a function B at all places where the 
state has the property that is intended to be observed. It records the result of the kind 
of test defined in [1] and [6]. Barbed simulation and barbed refinement are then 
defined in the usual way as  B ;   ; B∪  and  B ;  ; B∪  respectively. In general, B is 
not a retraction. The purpose of the barb is usually to define a form of simulation 
which is stronger than strong simulation, so B cannot be monotonic. 

In a theory used for program proofs, the most important properties (to prove the 
absence of) are those that indicate that the program has gone wrong.  And two of the 
most prevalent risks of concurrent programming are deadlock and livelock.  Deadlock 
occurs when two processes are waiting for each other, but refuse to participate in 
communications offered by the other. Livelock occurs when a process can engage in 
an infinite series of hidden events, and never has to wait for a communication to be 
offered by its environment. These two barbs have proved to widely useful in practice.  
A recently discovered barb is the revival of [22]. 

Simulation cannot deal properly with deadlock. Indeed, a process that never 
engages in any event whatsoever displays immediate deadlock; but simulation 
actually proves that it meets every specification whatsoever. Weak simulation cannot 
deal properly with livelock, because all hidden events are effectively concealed, 
including infinite sequences of them. The FDR model of CSP deals with both these 
problems, by making their observation explicit in the form of refusal barbs and 
divergence barbs, which are effectively added at the end of each trace. These will be 
the topic of this section.  

6.1   Refusals   

Many of the events modelled in a process algebra are communication events. Their 
successful completion depends on participation not only by the process itself, but also 
by some other process in its environment. If either participant refuses to engage in the 
events offered by the other, nothing further can happen. This is the notorious 
phenomenon of deadlock. This is the primary cause of unexpected deadlock. 

Let X be a set of communication events. Then ‘ref(X)’ is an observation (barb) 
meaning that the process is deadlocked, even though its environment is prepared to 
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synchronise with any the communications in X, and even allows the selection to be 
made by the process itself. This concept of a refusal is introduced by a function R, 
defined by the transition rules 

RqRp

qrefp
Xref
X

⎯⎯ →⎯ )(
               

RqRp

qp
a

a

⎯→⎯
⎯→⎯   

where   p  refX  q    ≅    ∀ x : X  ∪ {τ } .   ¬ p ⎯→⎯x _    ∧    q  =  p 
One of the standard healthiness conditions of CSP is that every event that cannot 

happen can be added to the refusal set. This follows from the definition of refX , 
because 

refX ⊆  ⎯→⎯x  ; U  ∪  refX ∪{x} 

Furthermore, every subset of a refusal set can also be refused.  These two 
healthiness conditions can be coded algebraically 

 R ; ⎯⎯⎯ →⎯ ∪ )( YXref  ⊆ R ; ⎯⎯ →⎯ )( Xref  

     R ; ⎯⎯ →⎯ )( Xref  ⊆ R ; ( ⎯→⎯x  ; U  ∪ ⎯⎯⎯⎯ →⎯ ∪ }){( xXref ) 

Of course, the validity of these conditions depends on the assumption that they are 
satisfied by any a priori refusals in the transition system, namely ones that possibly 
existed before application of R. To avoid such non-standard refusals, a process 
algebra usually forbids the explicit occurrence of ref(X) (and other barbs) in its 
process descriptions.  

We define refusal-barbed simulation in the usual way: 

   r  ≅ (R ;   ; R∪)  

By Theorem 3.2,    r  is the weakest relation S satisfying 

         S ; ⎯→⎯a     ⊆     ⎯→⎯a  ;  S if  a  is not a refusal 
       S ; refX     ⊆     refX  

The second clause can be expanded 

 p S q     ∀X . [ (∀x : X ∪ {τ }  . ¬ q ⎯→⎯x )    (∀x : X ∪ {τ } . ¬ p ⎯→⎯a )] 

By simple contraposition of implication and set-theoretic simplification, this is 
equivalent to 

 p S q      (∀x .   p ⎯→⎯x        q ⎯→⎯x ∨  q ⎯→⎯τ ) 

As a result,  r  comes quite close to satisfying the defining property of two-thirds 
simulation [13]. We will therefore give it that name. 

Refusal-barbed refinement is also defined in the standard way: 

r ≅          R ;   ; R∪ 



 CSP is a Retract of CCS 57 

 

This relation can be fairly efficiently computed using model checking, using the 
formula  R ; T ;   ; R∪ . Unfortunately, the final R∪ cannot be omitted, because R is 
not monotonic and cannot be a retraction.  

Having defined r in a standard way, we are obliged to show that it is essentially 
the same as the standard CSP notion of failures refinement. In CSP, refusal barbs are 
restricted to appear only at the very end of a trace, whereas in a trace of  Rp they can 
occur anywhere, any number of times. Let E be the set of all sequences that contain at 
most one refusal, and the refusal is at the end. We use E to select the failures of p 
from the traces of  Rp : 

 failures(p) ≅ traces(Rp)    E 

Note that this definition of failures differs from the original one, in that it includes 
also traces which do not end in a refusal. 

Lemma 6.1.1.      traces(Rq)  ⊆   traces(Rp)            failures(q)  ⊆   failures(p) 

For the reverse implication, we define a function close which adds into any subset of 
E all those additional traces which could have been introduced by  R . 

close(S)     ≅    S  ∪  {s<r>t | s<r> ∈  S  ∧   st  ∈  close(S)  ,   r  a refusal} 

This is clearly a monotonic function.  Furthermore 

Lemma 6.1.2.        traces(Rq) = close(traces(Rq)    E ) 

Theorem 6.1.1.         p  r  q          ⇔           failures(q)   ⊆    failures(p) 

Proof: From the preceding two lemmas. 

We have now shown how two-thirds simulation and failures refinement can both be 
defined in terms of R. As a result, failures refinement can be fairly efficiently 
computed by model-checking, just exploiting Theorem 5.1.7 to get 

r     =     R ; T ;   ; R∪   

But we still have to make good the claim that the simple failures of CSP is a retract 
of CCS modulo two-thirds simulation.  The relevant retraction will be (R ; T ).  That 
will take the rest of this subsection. 

Lemma 6.1.3.    R ; ⎯→⎯a  =        ⎯→⎯a ; R         if  a  is not a refusal 

          R ; ⎯⎯ →⎯ )( Xref  =        ( ⎯⎯ →⎯ )( Xref  ∪  refX ) ; R    
         R ; refX  =         refX  ; R 

Although R is not a retraction it is an idempotent function, and a decreasing one.   

Theorem 6.1.2.                ⊆      R ;      
                 R ; R ;       =      R ;     

Proof: From the preceding lemma by Theorems 4.2 and 4.3. 
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Corollary.      R  is a retraction with respect to    r  .              {because  R ;   r =    r} 

This section is incomplete. 

6.2    Failures with Hiding 

In CSP, the standard model combines refusals barbs with the concealment of hidden 
events. The relevant refinement ordering is defined by composing  W  with  R : 

    rw =      R ; W ;  ; W∪ ;  R∪   

Two-thirds simulation also has a weak form, which can be similarly defined:  

      rw =      R ; W ;   ; W∪ ;   R∪      =      R ; W ;   ; R∪   

One of the effects of W is to insert a τ transition from every process to itself. Any 
subsequent application of R will discover that all states are unstable; so it will never 
insert a refusal. As a result,  

Lemma 6.2.1.    W ; refX        =   {}     

Lemma 6.2.2.   W ; R ;        =   W ;  

Proof: If  a  is not a refusal  

   W∪ ;  W ; R ; ⎯→⎯a  =     W∪ ;   W ; ⎯→⎯a ; R                            {Lemma 6.1.3} 
   =     W∪ ;   = a => ; W ; R                  {W commut.} 

=    ⎯→⎯a  ; W∪ ;   W ; R       {R ; ⎯→⎯τ   =   ⎯→⎯τ  ; R} 

W∪ ;  W ; R ; ⎯⎯ →⎯ )( Xref   =    W∪ ;  W ; ( ⎯⎯ →⎯ )( Xref ∪  refX ) ;  R          {R commut.} 
    =    W∪ ;   = ref(X)=> ; W ; R               {W ; refX  = {}} 

    =    ⎯⎯ →⎯ )( Xref  ; W∪ ;   W ; R                {W  commut.} 

Theorem 6.2.1.     R ; W  is idempotent. 

Proof:          R ; W ; R ; W ;  ⊆      R ; W ;  R ;   ; W ;  
       =      R ; W ;   ; W ;                      {Lemma 6.2.2} 

   =      R ; W ; W ;                         {W  mon.} 
   =      R ; W ;                        {W  idem.} 

    ⊆     R ; W ; R ; W ;                   {R , W  dec.} 

Corollary. R ; W   is a retraction with respect to     rw  . 

This section is incomplete. 

6.3   Divergence   

Live-lock, also known as divergence, is a phenomenon that occurs when a process is 
engaged in an unbounded series of internal events, each of which consumes some 
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resource. It typically arises from an unguarded recursion in a program, for example an 
iteration with a permanently false exit condition. Because live-lock cannot be 
observed from any finite trace, it is called a ‘liveness’ property, rather than a safety 
property of a process. 

One of the applications of a theory of programming is to prove the validity of 
optimising transformations. To prove the justifying equations, it is necessary that the 
theory should ignore consumption of resources. That is why each finite subsequence 
of hidden events is legitimately regarded as hidden, but hiding an infinite sequence is 
usually inadvisable, since there is no limit on the computational resources that may be 
consumed. Even if there are other concurrent processes behaving properly, live-lock 
is often regarded as undesirable. We therefore introduce a special symbol  σ  to 
denote a hidden event that consumes resources. 

CSP provides a method of proving the absence of divergence by making it 
observable as a barb, for which we choose the symbol δ. This turns absence of 
divergence from a liveness property into a safety property, which can be proved by 
the normal method of refinement. The barb is introduced into a transition system by a 
function D, which also turns any bounded sequence of σ into the harmless ignorable 
. D is defined by the transition rules 

  p  τ   q      p ⎯⎯→⎯ ><a  q  
-------------------   --------------------- 

         Dp ⎯⎯→⎯ ><δ  Dq               Dp ⎯⎯→⎯ ><a  Dq 

where τ  is the greatest binary relation  r  satisfying the equation 

r = ⎯→⎯τ  ;  r 

Theorem 6.3.1. D  is a retraction. 

Note that the definition  of p τ  q does not depend on  q, so the behaviour of Dp after 
divergence is arbitrary. This is in accordance with the basic philosophy of CSP, which 
was primarily intended to support a top-down procedure for designing correct 
implementations from their specifications. It took the view that divergence was never 
a desirable behaviour for an implementation, and that any process that contains a 
potential divergence cannot satisfy any reasonable specification. A divergent process 
must therefore be placed at the bottom of the refinement ordering. This is enforced by 
a healthiness condition stating that any process that can diverge at any point can also 
do anything else whatsoever from that point on. Of course, this condition makes CSP 
entirely unsuitable to help in debugging a program that suffers from a divergence 
error.  For debugging, a purely operational language definition is more suitable. That 
is why it is so important to establish a link between an operationally defined theory 
and one which takes a more abstract and idealistic point of view that supports proofs 
that a well-designed system will never diverge. 

In fact CSP took a stronger view, that even the possibility of divergence is 
equivalent to arbitrary behaviour, and the divergence barb does not even have to be 
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selected. A slight change in the definition of D would model different choices of 
divergent behaviour. These topics will not be pursued further at this point. 

We define divergence-barbed simulation and the trace-divergence model of CSP in 
the usual way 

  d  ≅         D ;    ; D∪ 

d         ≅        D ;   ; D∪ 

A development similar to that of section 5.2 leads to the conclusion that CCS 
modulo divergence-barbed simulation is a retract of CCS modulo strong simulation, 
and that the trace-divergence model of CSP is a retract (by D ; T) of CCS modulo 
divergence-barbed simulation. 

This section is incomplete. 

7   Conclusion 

The ideas of this paper have been derived from many sources. The concept of a 
retraction was introduced from topology to Computer Science by [23]. Relationships 
between families of process algebras and their orderings have been comprehensively 
explored in [25]. The algebraic expressive power of CCS and CSP have been 
analysed and compared in [2, 24] and elsewhere. The use of transition rules to define 
functions is due to [18]. Barbed simulation was introduced in [16], and refusal barbs 
have been comprehensively treated in [17]. A series of testing equivalences (including 
traces and refusals) have been defined in [1]; they culminate in a testing equivalence 
identical to observation equivalence. Saturation of a transition system has been used 
in [6] as a means to relate testing pre-orders with simulation. Refinement has been 
related to a higher-order version of simulation by [7]. The efficiency of retractions has 
been exploited in the model-checking tool FDR [20]. 

This paper has put these original ideas together, and applied them specifically to 
illuminate the relationship between various versions of CCS and of CSP. Only the 
simplest standard definitions of simulation and trace refinement have been used. All 
the interesting variation is provided by the definition of the links between the theories.  
In many cases, a link translates each process of the source theory onto a process of the 
target theory that is its closest approximation. A link simultaneously specifies the 
healthiness conditions and the ordering of the target theory. The links are surprisingly 
simply defined by transition rules. They can be applied separately or (for suitable 
cases) in combination. The proofs are mostly trivial, and have been presented in an 
unusually algebraic style. There are no complex constructions or ingenious 
algorithms. Perhaps similar techniques may be found useful in the study of more 
modern process algebras like the π-calculus [15] and bigraphical systems [12]. 

The inspiration for the research reported in this paper arose at a Workshop held in 
Microsoft Research Ltd., in Cambridge on 22-23 July 2002. Those who contributed 
were Ernie Cohen, Cedric Fournet, Paul Gardiner, Andy Gordon, Tony Hoare, Robin 
Milner, Sriram Rajamani, Jacob Rehof and Bill Roscoe. Some of the ideas from the 
Workshop have been incorporated in the model checking tool Zing [19]. 
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An unexpected result of this research is that a specification-oriented denotational 
semantics like that of CSP can be systematically derived from a purely operational 
semantics like that of CCS, by means of operationally defined links. Our first attempt 
at a derivation in the reverse direction could only prove partial correctness of an 
operational implementation of CSP [10]. A unifying theory that reconciles these two 
styles of semantic presentation may be influential when model-checking tools based 
on simulation are used in combination with theorem-proving tools based on 
specification. Perhaps one day such tools will be regularly applied together for 
reliable system design and validation [11]. 
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A Design-Based Model of Reversible
Computation

Bill Stoddart, Frank Zeyda, and Robert Lynas

University of Teesside, UK

Abstract. We investigate, within the UTP framework of Hoare He De-
signs, the effect of seeing computation as an essentially reversible process.
We describe the theoretical link between reversibility and the minimum
power requirements of a computation, and we review Zuliani’s work on
Reversible Probabilistic Guarded Command Language. We propose an
alternative formalisation of reversible computing which accommodates
backtracking. To obtain a basic backtracking language able to search
for a single result we exploit the already recognised properties of non-
deterministic choice, using it as provisional choice rather than implemen-
tor’s choice. We add a “prospective values” formalism which can describe
programs that return all the possible results of a search, and we show
how to formally describe the premature termination of such a search,
a mechanism analogous to the “cut” of Prolog. An appendix describes
some aspects of the wp calculus in terms of Designs, as needed for our
proofs.

Support for the programming structures described has been incor-
porated in a reversible virtual machine for i386 platforms with Posix
compatibility.

Keywords: reversible computing, backtracking, Hoare He Designs, wp
calculus, prospective values.

1 Introduction

We investigate the effect on formal software development of regarding compu-
tation as an essentially reversible process. Programs written in sequential pro-
gramming languages normally erase information as they run: for example the
assignment x:=7 erases the former value of x. Our target execution platform
will be a reversible virtual machine which preserves such information. This in-
curs an efficiency penalty on current architectures, but, looking at the efficiency
of computation in absolute terms, we will see that it is precisely the erasure of
information during irreversible computing steps which inescapably requires the
expenditure of energy during a computation, and imposes a lower bound on its
energy requirements.

The thermodynamics of computation was first formulated by R Landauer
of IBM Research in 1961 [10]. It was developed to give a theory of reversible
computation by C Bennett [2]. A tutorial exposition can be found in the Feynman
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Computing Lectures [4]. The MIT Pendulum project was a recent attempt to
produce an efficient reversible processor using current technologies [6]. P Zuliani
has expounded the essential theory using a guarded command language with
predicate transformer semantics, thus bringing it within the realm of practical
software development [21].

In this paper we look at reversible computing within the framework of “De-
signs”, the formalism proposed by Hoare and He in their work on Unifying
Theories of Programming [9]. We exploit the reversible nature of our comput-
ing model to handle garbage collection and to introduce backtracking constructs.
The latter will require some modification of the standard UTP approach, in that
we will repeal the “Law of the Excluded Miracle” We include in our language
the naked guarded command g =⇒ P , with the operational interpretation that
an attempt to execute an infeasible command will cause computation to reverse
back to the most recent point at which an unexplored choice is available for
execution.

The paper is organised as follows. In Section 2 we review the concept of
logical reversibility and establish the relationship between irreversible operations
and necessary power consumption. In Section 3 we consider “reversible pGCL”,
Zuliani’s adaptation of Morgan and McIver’s probabilistic guarded command
language [13], and we begin to tackle an issue not fully covered in Zuliani’s
work, that of “stepwise reversibility”. In Section 4 we consider the use of non-
deterministic choice as a tool for describing a backtracking search. In Section 5
we begin to consider the problem of formally expressing collections of results, and
we outline our adaptation of “bunches”. In Section 6 we propose a “prospective
value” formalism to describe all the results of a search. In Section 7 we show
how to formally describe the premature termination of a search by a mechanism
analogous to the “cut” of Prolog. In Section 8 we draw our conclusions and
outline future work. Some proofs linking designs and weakest preconditions are
given in an appendix.

One aspect of this work that we would like to stress, although the details are
not discussed, is the existence of an associated execution platform. We have writ-
ten a reversible virtual machine which runs on i386 platforms under Linux, BSD
Unix or Windows with a Posix compatibility layer. It provides an interactive in-
termediate level postfix language and development environment and closely sup-
ports the programming structures described here. Various articles, manuals and
the current source files are available from http://www.tees.ac.uk/formalmethods.

2 Logical Reversibility

As computer scientists we are accustomed to abstracting away from particular
computing mechanisms. Our aim in this section, however, is to consider a com-
putation as a physical process with particular regard to its necessary energy
requirements. One way to anticipate our arguments is to to consider a collection
of balls moving on an idealised billiard table, with no pockets and on which balls
roll and rebound from the cushions with no energy loss. The laws of motion in
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such a “conservative system” are deterministic and reversible, and at any time
its previous history could be recovered if we could exactly reverse the direction
of movement of each of the balls. On a system where damping occurs, how-
ever, the balls will eventually come to rest, and the system no longer contains
the information required to recover its past history. This example provides an
association between damping (energy consumption) and loss of information (ir-
reversibility) which we will now attempt to develop, along with the minimum
energy requirements involved.

In a talk given in 1949 and later published in [18], John von Neumann re-
marked that there must be a dissipation of k ∗ T ∗ ln(2) units of energy per
“elementary act of information, that is per elementary decision of a two way
alternative and per elementary transmission of one unit of information”. His
analysis is based on the assumption that each “elementary act” removes one
bit of uncertainty from the result of a computation, thus reducing the entropy
within the computer by the classical thermodynamic quantity k ∗T ∗ ln(2), and
requiring an equivalent energy dissipation to the environment.

This roughly sketched theory remained unchallenged until 1961 when Rolf
Landauer provided an analysis based on determining the essential function of
energy consumption during computation.[10], and found that it was only nec-
essary for “standardizing signals and making them independent of their exact
logical history”, i.e. that energy consumption was only required for the irre-
versible steps of a computing process.

To explore these concepts we need a physical model that allows information
to be registered in a material way. Because the laws of thermodynamics apply in
a very general way, we will not analyse a practical model of memory storage, but
rather one which allows us to perform our demonstrations in the simplest way.
Figure 1 shows a cylinder containing a single molecule of ideal gas and having
a piston at each end. Initially the molecule is free to move anywhere within the
piston. A zero is registered by moving in the piston on the left and restricting
the molecule to the right half of the cylinder.

A value of one is similarly registered by moving in the piston on the right.
This model has been used by Feynman [4], Bennett [3] and others, and in a
slightly more elaborate form dates back to a paper from 1929 by Szilard [17].

Fig. 1. Cylinder containing one molecule of gas
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In the lower diagram of Figure 1 the piston on the right has been moved in
against the pressure of the gas (whose molecular movement we interpret in a
time-averaged sense) so that the gas is compressed to half its previous volume.
As the piston starts to move the initial effect is to increase the energy in the
molecule, which is now rebounding from a moving surface and thus gains speed.
However, we will assume an isothermal compression, that is one in which the
additional energy of the molecule is rapidly absorbed by the environment, so that
we can assume the compression of the gas takes place at a constant temperature.
The Ideal Gas Law tells us that the pressure and volume of a gas at temperature
T are related by P ∗V = N ∗ k ∗ T where k is Boltzmann’s constant, N is the
number of molecules in the gas and T is the absolute temperature. If the distance
between the pistons in our cylinder is L and the area presented to the gas by
each piston is A, the volume of the gas is V = A ∗ L For a single molecule we
thus have P ∗A ∗ L = k ∗ T . The force exerted by the gas on one piston is thus
P ∗A = k ∗T/L. To find the minimum work needed to compress the gas to half
its volume we need to integrate this force between an initial distance separating
the pistons, L0 say, and L0/2.

W =
∫ L0

2
L0

k∗T
L dL = k ∗ T ∗ ln(L0

2 )− k ∗ T ∗ ln(L0) = −k ∗ T ∗ ln(2)

A very interesting property of this result is that it depends neither on the
mass of the molecule or on the size of the cylinder, and is, in fact, the gen-
eral result for the change of entropy associated with constraining a particle
to half its phase space along one of its degrees of freedom in any thermal
system.

We can similarly recover from this compressed gas k ∗T ∗ ln(2) of free energy
when allowing it to re-expand. We note too that this energy is not obtained from
the gas, but from the environment: its availability is due to the configuration of
the system.

Representation of a bit of data is more realistically characterised as some form
of bistable well. Figure 2 represents orientations of a pair of magnets, linked so
that they are always at the same angle. The ensemble has two positions of stable
equilibrium, representing 1 and 0 states.

In the figure we see the magnets being moved from a 1 to a 0 state. The graph be-
low represents the potential energy of the ensemble as the two linked needles pass
through different angles of rotation. The reversible operation of switching from
1 to zero can essentially be performed without consumption of energy, since the
energy required to move “up” to the state of unstable equilibrium can, in princi-
ple, be recovered whilst moving “down” to the 0 state. The same analysis applies
to switching from 0 to 1, but what about the operation of just toggling the bit
(without knowing its current state)? This can be done in an energy free manner
by rotating the whole ensemble about its centre point as shown in Figure 3.

Now let us consider the irreversible operation “set to 1” illustrated in fig-
ure 4. Recall that a conservative system obeying the laws of motion is both
reversible and deterministic. An energy free “set to 1”, therefore, would have a
deterministic reverse trajectory. However, the reverse trajectory of “set to 1” is
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Fig. 2. Pair of compass needles forming a bistable well

Fig. 3. Energy free toggling of a bit

?

Fig. 4. The irreversible “set to 1” operation

non-deterministic, since it has to include the possibilities of returning to a pre-
vious state of either 0 or 1. This contradiction tells us that our assumption that
“set to 1” can be performed in a conservative system is incorrect, and therefore
some damping is required in this case. Before we definitively accept this conclu-
sion however we must dispose of the following counter argument. ”The reverse
trajectory need only be non-deterministic if all previous history has been lost
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Fig. 5. Szilard’s Cylinder

by the “set to 1” operation. So long as we allow some residual difference in the
configuration of a 1 bit that was previously a 1 and a 1 bit that was previously a
zero, the argument breaks down. Also, such differences are seen on real devices,
as, for example, in the ability to perform forensic analysis of a blanked area of a
hard disc and retrieve its previous contents.” Although this argument has some
force as far as one single operation is concerned, it is not possible to employ it
in any physically realistic way over a continued sequence of operations without
the necessary residuals building up and disabling the devices capacity to store
information. As Landauer says “the physical many to one mapping, which is the
source of the entropy change, need not happen in full detail during the machine
cycle which performed the logical function, but it must eventually take place,
and this is all that is relevant for the heat generation argument”.

So far we have considered two separate arguments based respectively on the
energy needed to constrain a particle along an information bearing degree of
freedom and on the reversibility of the laws of motion in a conservative system.
To draw these together consider again our cylinder of gas. What if, instead of
compressing the molecule into one half of the cylinder by exerting force on one
of the pistons, we had instead trapped the molecule on one side of the cylinder
by inserting a partition, as shown in the upper cylinder of figure 5. This is an
operation that, in principle, requires no work.

We could then push in the piston from the side that does not contain the gas.
Since we are not moving the piston against any resisitng force this action again,
in principle, requires no work. We could then remove the partition and be in a
position to extract work from the piston without having put any work in.

This apparent paradox was proposed by L Szilard[17] in 1929 as an aid to
analysing the closely related “paradox” of Maxwell’s Demon. Szilard looked for
a compensating energy input in the measurement that would need to be made
before it could be decided which piston to move. His analysis was universally
accepted until Landauer’s colleague at IBM Research, Charles Bennet, showed
that measurement is not intrinsically an energy consuming process, and, apply-
ing Landauer’s analysis, pointed out that the mechanism that registered which
side the molecule was on would itself have to perform an irreversible operation
analogous to the “set to 1” operation described above, and that this was where
a necessary energy input must occur.
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Landauer’s analysis led him to the conclusion that a computation which is
reversible at each step would, in principle, have a zero minimum energy require-
ment. However, he also reasoned that computing inevitably uses irreversible
steps, for example the assignment x := 0 cannot be reversed because it destroys
the value of x . Such steps are inevitably associated with the consumption of a
certain minimum amount of energy. If a computing process could be contrived
which used only reversible steps, then the laws of thermodynamics would not
impose any minimum energy requirement for the computation. He notes that
individual steps in a computing process can be made reversible by providing
additional memory storage to preserve data that would otherwise be lost, but
rejects this as a general technique as the result would be an unpredictable re-
quirement for additional memory which would need to be irreversibly initialised
to a known value: “Our unwieldy machine has therefore avoided the irreversible
operations during the running of the program, only at the expense of added
comparable irreversibility during the loading of the program.”[10]

This conclusion was incorrect, because we can organise the required addi-
tional memory efficiently as a stack, and regard its initialisation as a one-off cost
which, once paid, will allow us to run all subsequent programs in a reversible
manner. Despite this one erroneous conclusion Landauer’s 1961 paper made the
seminal contribution in setting the terms for a debate on reversibility and was
republished in volume 44 of the IBM Journal of Research and Development in
2000.

In 1963 Y Lecerf [11] formulated a reversible Turing Machine which poten-
tially indicated how reversible computations could be managed, but this work
did not feed into the reversible computing debate. However in 1973, C Bennett
described[2] how an arbitrary (one tape) Turing Machine could be translated
into a reversible 3 tape machine. The latter performs the calculation of the orig-
inal machine, storing any overwritten data on the (originally blank) second tape.
It then copies the result to the third tape. Finally it reverses its calculations so
as to terminate with the first tape back in its original condition, the second tape
once again blank and the result left on the third tape. Fundamental to Bennett’s
analysis is that writing to a blank tape is a reversible operation. The blank sec-
ond tape plays the role of the pre-initialised memory mentioned above. Bennett
linked his machines to the energy requirements of computing with the comment
that Turing “machines may be made logically reversible at every step.. This ..
makes plausible the existence of thermodynamically reversible computers which
could perform useful computations at useful speed while dissipating considerably
less than kT of energy per logical step.”

3 Reversible pGCL

An interesting contribution to reversible computing is given in the paper “Logical
Reversibility” by P Zuliani [21]. The author provides a similar formulation of
non-reversible computation in terms of reversible computation. However, rather
than using Turing Machines, he formulates his translation in terms of pGCL[13].
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His work extends reversibility to computations involving non-deterministic and
probabilistic choice, and presents it in a form suitable for incorporation into a
software development method.

His technique for making an irreversible language reversible is to add some
extra state, in the form of a single boolean variable b and a history stack, and
to transform each operation S in the language into a reversible operation Sr
which has the same effect as S on the original state space and which uses
the history stack to preserve any information that would otherwise be lost
when S is executed. For each Sr he provides an inverse operation (actually a
right inverse) Si such that Sr ; Si = II. The technique is illustrated in the
following table where we give these constructs for the assignment and choice
statements.

S Reversible Operation Sr Inverse Operation Si

v := e push v ; v := e pop v
R � S push b; (Rr ; push true) � (Sr ; push false) pop b; Ri � b � Si ; pop b

We would like to take this analysis a stage further because it does not, as it
stands, provide the stepwise reversibility we require. For example the inverse
of the assignment to v is pop v , a non-reversible operation, and the trans-
formed assignment statement, push v ; v := e, contains the irreversible step
v := e.

We will show an alternative approach to the construction of a reversible as-
signment which gives a transformation consisting of the sequential composition
of reversible steps. We initially limit our discussion to a language with integer
variables and we consider only the assignment of a single variable rather than a
variable list. We first note that we have some reversible assignment statements
to call upon, namely those of the form x := x + e, where x \ e, i.e. x does not
occur free in e. Such a statement has an inverse x := x − e. We set ourselves
the problem of implementing general assignment purely in terms of reversible
assignment statements.

We note that assignment to a zero valued variable is reversible, since:

(x = 0 � x := e) = (x = 0 � x := x + e[0/x ])

Here the precondition x = 0 allows us the freedom to implement x := e by the
reversible command x := x + e.

The role of the history stack will be taken by an integer array, h, having a
large enough size hsize, and with an array index i which will, loosely speaking,
be used as a stack pointer. h and i are fresh variables with respect to the original
program. We assume the elements of h are initialised to zero and i is initialised
to one (requiring an initial investment of energy).

We can give a reversible transformation of x := e as a sequence of reversible
commands, as shown in the following trace:
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assignment h(i − 1) h(i) h(i + 1) x
? 0 0 x0

h(i) := h(i) + x ? x0 0 x0
h(i + 1) := h(i + 1) + e ? x0 e x0
x := x − h(i) ? x0 e 0
x := x + h(i + 1) ? x0 e e
h(i + 1) = h(i + 1)− x ? x0 0 e
i := i + 1 x0 0 0 e

The reverse operation may be formed from the inverse operations of each of
the above steps:

assignment h(i − 1) h(i) h(i + 1) x
x0 0 0 e

i := i − 1 ? x0 0 e
h(i + 1) := h(i + 1) + x ? x0 e e
x := x − h(i + 1) ? x0 e 0
x := x + h(i) ? x0 e x0
h(i + 1) := h(i + 1)− e ? x0 0 x0
h(i) := h(i) − x ? 0 0 x0

The transformation of x := e and the inverse operation given above are only
correct under the assumption h(i) = 0 ∧ h(i + 1) = 0, which is implied by the
stronger condition:

i ∈ 1..hsize − 1 ∧ ∀ j • j ∈ i ..hsize ⇒ h(j ) = 0

which is invariant in the sense that it is established by the initialisation of the
history stack and preserved by each forward and reverse assignment (under the
assumption that hsize is sufficiently large). It must similarly be preserved by all
other operations, but we do not have space to detail that here.

A second remark we need to make concerning the above analysis is that we
consider the expression value e to have been computed and stored in some suit-
able register before the assignment is made. Subsequent to the reverse execution
of the assignment would therefore be the “uncomputation” of the value e.

We can describe the stepwise construction of non-integer assignments using
an extra level of refinement in which we introduce some details that, for normal
purposes, can be left to the compiler of our implementation-level code. This
extra level will interpret the execution of our assignment statements in terms
of a reference semantics. Let the values of some type D that arise during a
calculation be denoted by d1, d2... With each value di we associate a unique
reference rdi of type N. Let RefD be the partial injection {rd1 �→ d1, rd2 �→
d2...}. We now consider v := di , which would normally be an assignment at the
implementation level, to be an abstract assignment implemented, in our further
level of refinement, by vr := dri . The refinement requires an abstraction predicate
which tells us that RefD(vr ) = v . Since all assignment is now implemented as
integer assignment, our previous analysis will suffice.
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4 Reversible Computing and Backtracking

Our aim is to exploit reversible computation to introduce automatic backtrack-
ing and more abstract (mathematical) data types into an implementation level
language. Rather than adding additional state to provide reversibility, as de-
scribed in the previous section, the formal technique we employ is to use non-
deterministic choice as provisional choice instead of (or as well as) implementor’s
choice. Though not often discussed, this idea has a long history. As far back as
1967, in his paper “Non-deterministic Algorithms” [5], Floyd talked of “programs
governed in part .. by final causes for the sake of which their effects are carried
out”. In “The Specification Statement”[12] Carroll Morgan mentions the possi-
bility as follows: “Ordinarily we limit the syntax of our programming language so
that miracles cannot be written in it. If we relax this restriction, allowing naked
guarded commands, then operational reasoning suggests a backtracking imple-
mentation”. He gives as an example this refinement of the program i : [a[i ] = v ]
which finds one position of an element in an array.

if
i := 0 � .... � i := N − 1;
a[i ] = v −→ skip

fi

He comments: “We are using the generalised if .. fi which allows abortion if
its body is miraculous, and the body is miraculous only when no branch of the
alternative can avoid the miraculous behaviour to follow. In this context if .. fi
resembles the “cut” of Prolog, allowing failure (preventing backtracking) if no
solution is found..”

A similar possibility is noted by Eric Hehner in [8], although, as he remarks, his
timing calculus does not work in conjunction with a backtracking interpretation.

To begin with, we will introduce a limited form of backtracking simply by
allowing naked guarded commands of the form g =⇒ S .1 This requires the
repeal of Dijkstra’s “Law of the Excluded Miracle” at the implementation level.
In UTP this means suspending healthiness condition H4, which insists that
Designs should be feasible. In the following discussion S will denote a program
with alphabet s and with design P � Q , i.e. a program with assumption P and
commitment Q . We remind the reader that such a design P � Q satisfies H4 if
∃ ok ′, s ′ • (P � Q).

We define g =⇒ (P � Q) =̂ (g ⇒ P � g ∧ Q). Note that this is a design,
but not one that will obey H4, other than in the trivial case where g = true.

With this definition we separate the concepts of guard and choice. One effect
is that the conditional S � b � T no longer needs to be a primitive construct,
as it can be defined as S � b � T =̂ b =⇒ S � ¬ b =⇒ T .

As a simple example of the backtracking effect obtained with guards and
choice consider S =̂ x := 1�x := 2; x = 2 =⇒ II . An operational interpretation
of this program is that it first makes a choice of assigning 1 or 2 to x . If it
1 The use of ‘=⇒’ for guards is borrowed from B and preferred over the normal ‘−→’

because we will presently be using the latter to represent a different form of guard.
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assigns 1 the following statement is infeasible, which provokes reverse execution.
The second alternative is then tried, making x = 2. The following command is
now feasible and the program terminates with x = 2. Alternatively, if the first
command initially assigns x := 2, the second command is immediately feasible
and again the program terminates with x = 2. The formal calculation is:

x := 1 � x := 2; x = 2 =⇒ II = “writing each operation as a design”

true � x ′ = 1 ∨ x ′ = 2; true � x = 2 ∧ x ′ = x = “defn of P � Q”

ok ⇒ (x ′ = 1 ∨ x ′ = 2) ∧ ok ′; ok ⇒ x = 2 ∧ x ′ = x ∧ ok ′ = “seq comp”

∃ x ′′, ok ′′ • (ok ⇒ (x ′′ = 1 ∨ x ′′ = 2) ∧ ok ′′) ∧ (ok ′′ ⇒ x ′′ = 2 ∧ x ′ = x ′′ ∧ ok ′)

= “disjunction of the cases ok ′′ = false and ok ′′ = true”

∃ x ′′ • ¬ ok ∨ (ok ⇒ (x ′′ = 1 ∨ x ′′ = 2)) ∧ x ′′ = 2 ∧ x ′ = x ′′ ∧ ok ′

= “x ′′ \ ¬ ok”

¬ ok ∨ ∃ x ′′ • (ok ⇒ (x ′′ = 1 ∨ x ′′ = 2)) ∧ x ′′ = 2 ∧ x ′ = x ′′ ∧ ok ′

= “one point rule”

¬ ok ∨ (ok ⇒ x ′ = 2 ∧ ok ′) = “logic ¬ a ∨ (a ⇒ b) = a ⇒ b”

ok ⇒ x ′ = 2 ∧ ok ′ = “definition of P � Q”

true � x ′ = 2

Note that the symbols = and = both denote equality, but with different
binding power. The latter binds more weakly than the logical connectives, and is
often used between the steps of a proof or derivation. We write equality between
predicates A and B to indicate that they are equivalent at the top level, i.e.
� A⇔ B .

For a more extensive example of the use of this form of backtracking see
[19] where we present a specification and refinement proof of the Knight’s Tour
problem in a version of B modified to accept naked guarded commands. In
this treatment the specification of the problem obtains the solution in a single
choice which details a sequence of moves which satisfies the requirements of
the problem. The implementation uses a loop which finds the solution step by
step, and our refinement proof ensure the result meets the specification. Search
heuristics may be introduced, such as making the most constrained choice first.
These make use of our knowledge of the order in which non-deterministic choices
are taken in our implementation. This knowledge is not recorded in our semantics
of choice, so any performance gains are outside the scope of our formal analysis.

An advantage of reversibility is that it provides a simple basis for the man-
agement of garbage collection, and we have found it possible to provide a com-
plete and efficient reversible implementation of finite sets which potentially
reduces the semantic distance between specifications and implementations and,
along with the availability of automatic backtracking, gives a very expressive
implementation level language. A disadvantage of this language is that we can-
not always rely on its syntax to protect us against over-refinement. We have
to perform a syntactic analysis on an implementation to see if the commands
used could introduce infeasibility, and, in such cases, protect against this by
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generating appropriate proof obligations. Without this precaution magic would
qualify as an implementation of any design. How these advantages and disad-
vantages will impact on proof effort over a range of example programs remains
to be investigated.

5 Bunches

A shortcoming of the backtracking technique introduced in the previous section
is that it is limited to finding a single solution and that backtracking completely
erases any information found. We may wish to find and record all solutions to a
problem, or a set of solutions that collectively satisfy some criteria. This will be
the focus of our investigation for the rest of the paper. For the purposes of our
theory presentation it will be convenient to use “bunches” [7, 8]. A bunch is the
“contents of a set” (Hehner) without the packaging that allows set representation
to build up nested structures. A bunch of bunches is self-flattening, and that
property will simplify our presentation.

Any value is an elementary bunch or element. For example 2 is a bunch. In
set theory we must distinguish between 2 and {2}, i.e. between an element and
a set containing just that element. In bunch theory there is no distinction.

The empty bunch is written as null . If A and B are bunches then their union
and intersection, written A,B and A′B respectively, are also bunches. We write
A : B to say A is a sub-bunch of B . As with sets, the repetition and order of
elements has no significance. Some examples:

2, 3 : 1, 2, 3, 4
2 : 2
A : A,B
null : 1, 2

Operators applied to bunches are lifted in an obvious way: they distribute
through bunch union and are strict with respect to null . For example, 1, 2+3, 4 =
1 + 3, 1 + 4, 2 + 3, 2 + 4 = 4, 5, 6 and 1, 2 + null = null .

We adopt bunch theory to our particular ends, which are to use it in a typed
(or multi-sorted) theory which uses partial functions together with classical logic
and takes a total correctness view of program description, i.e. the approach of B
and Z. All identifiers in our theory denote elements. Bunches only arise as expres-
sions. Bunches have no effect on our treatment of types, which are maximal sets.
The type of any non-empty bunch is the same as the type of its elements. We
also have an empty bunch of each type. To model non-termination we introduce
an improper bunch ⊥, or more strictly an improper bunch for each type. Given
a type (maximal set) T the associated improper bunch is ⊥T . Where context
can determine its type we write the bottom bunch as ⊥. The bunches of any
type form a complete lattice under bunch inclusion with the improper bunch as
its bottom element. For any proper bunch E we have E : ⊥ and ¬ ⊥ : E . The
improper bunch is strict with respect to bunch union, i.e. E ,⊥ = ⊥ . It is strict
with respect to any operation applying to bunches of its type, e.g. E +⊥ = ⊥.
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The “guarded bunch” g −→ E is defined by the property:

(g ⇒ (g −→ E = E )) ∧ (¬ g ⇒ (g −→ E = null))

The “preconditioned bunch” p ||| E is defined as p −→ E ,¬ p −→ ⊥
The bunch comprehension § x • E , where E must include information that de-
termines the type of x , is the bunch of all values that can be taken by E as x
ranges over the values of its type. For example § n • 2 ∗ n is the bunch of even
numbers, and § x • 0 < x ∧ x < 3 −→ 10 ∗ x is the bunch 10, 20.

Where we need to distinguish bunches from other comma-separated lists we
enclose them in bunch brackets (b ..)b .

We write E [F/w ], where E and F are expressions and w a variable to denote
the substitution of F for w in E . If F and w are lists they must be of the same
arity and the substitution is made term-wise. Substitution distributes over bunch
union. For example E1,E2[F/w ] = E1[F/w ],E2[F/w ] and E [(bF1,F2)b/w ] =
E [F1/w ],E [F2/w ]. So long as F �= ⊥ the value of the expression E [F/w ] is
given as a bunch comprehension by E [F/w ] = §w ′ • w ′ : F −→ E [w ′/w ].

To remain within two-valued logic we avoid bunches of predicates by inter-
preting inner predicates (membership and equality) in a way that always makes
them either true or false. Given expressions X and S of types T and P T , the
membership predicate X ∈ S is true if it is point-wise true for each x : X
and s : S . Predicates such as a < b are interpreted as set membership, i.e.
a �→ b ∈ < . Thus 1, 2 < 3 is true, and both 1, 3 < 3 and 4, 5 < 3 are false.
Expressions A and B are equal if A : B and B : A.

Bunches allow us to define function application in a generalised way. Given
r ∈ A↔ B and a ∈ A we define the application of r to a by:

r a =̂ § b • a �→ b ∈ r −→ b

This generalisation of function application renders the separate notion of rela-
tional image superfluous, but more importantly it allows us to write r x = y
to express that r is functional at x and the unique value associated with x in
r is y, a luxury not usually permitted in systems which use two-valued logic
together with a relational model of function application. For example given a
partial function f and f x = 3 we are not entitled, under the classical dispensa-
tion, to deduce x ∈ dom f [16, 1]. With the definition of application given here
we can make this deduction, because were it false we would have f x = null .

Some further details of our use of bunches can be found in [20]. For a more
extensive description of the use of bunches in the context of predicative program
description see Paige and Hehner[15]. Morris and Bunkenburg have developed
a theory which accommodates boolean bunches and an associated four-valued
logic.[14]

6 Prospective Values

The following program finds one of the positions of an element with value e in
an array a of size asize, and leaves this position in i :

P =̂ i :∈ 1..asize; a[i ] = e −→ II
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If more than one element in the array has value e, there is more than one
possible result that can be left in i . We would like to be able to use the program
P to find and record all of them. With this aim in view let S � E represent
the bunch of possible values (the prospective values) expression E could take
after running program S . The symbol ‘�’ has a binding power just below the
program connective symbol ‘; ’. Relating this to our example program, the set
of all positions at which the value e occurs is now given by {P � i}. Aside:
we write this result as a set rather than a bunch because we use sets rather
than bunches to represent collectivities on our implementation platform. One
property of bunches that makes them attractive for theory description is that
they do not make a distinction between the integer n and a bunch of integer that
just contains n. However, this also makes their implementation less convenient
than that of sets, where the distinction between n and {n} allows us to represent
the first as a simple integer and the second using reference semantics. End of
aside.

For a design S = P � Q with an alphabet s we define:

S � E = P ||| § s ′.Q −→ E [s ′/s ]

In this definition, within the assumption P of S , the commitment Q of S is used
as a guard which selects those values of s ′ which S may allow to occur. For each
such value we obtain a possible value that E could take after the execution of S
by substituting s ′ for s in E .

The following proposition is useful for proving further properties of S � E .

Proposition 1. Let P � Q be a design, E be an expression and z be a fresh
variable, i.e. z \ P � Q and z \ E. Then:

z : (P � Q) � E ⇔ ¬ ((P � Q) wp ¬ (z : E ))

This proposition was suggested to us by Louis Mussat. The proof uses the fol-
lowing lemma, which is proved in an appendix.

Lemma 1. Let α(P � Q) = s, then:
(P � Q) wp r = ¬ (P ⇒ ∃ s ′′ • (Q [s ′′/s ′] ∧ ¬ r [s ′′/s ]))

We now prove the proposition.

Proof. We distinguish the cases ¬ P and P.

Assuming ¬ P

z : (P � Q) � E = “definition of (P � Q) � E”

z : P ||| § s ′ •Q −→ E [s ′/s ] ⇔ “assumption ¬ P”

z : false ||| § s ′ •Q −→ E [s ′/s ] = “defn of preconditioned bunch”

z : ⊥ = “property of the improper bunch”

true

also

¬ ((P � Q) wp ¬ z : E ) ⇔ “assumption ¬ P”
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¬ ((false � Q) wp ¬ z : E ) = “‘false precondition”

¬ false = true

this completes the proof for the case ¬ P

Assuming P

z : (P � Q) � E = “definition of (P � Q) � E”

z : P ||| § s ′ •Q −→ E [s ′/s ] ⇔ “assumption P”

z : true ||| § s ′ •Q −→ E [s ′/s ] ⇔ “bunch precondition”

z : § s ′ •Q −→ E [s ′/s ] ⇔ “existential property of bunch comprehension”

∃ s ′ • (Q ∧ z : E [s ′/s ]) ⇔ “assumption P and logic (true ⇒ a) = a”

P ⇒ ∃ s ′ • (Q ∧ z : E [s ′/s ])

= “change in bound variable name, noting s ′′ \ Q ∧ z : E [s ′/s ]”

P ⇒ ∃ s ′′ • (Q [s ′′/s ′] ∧ z : E [s ′/s ][s ′′/s ′])

= “property of substitution”

P ⇒ ∃ s ′′ • (Q [s ′′/s ′] ∧ z : E [s ′′/s ])

= “by logic a = ¬ ¬ a and lemma 1”

¬ ((P � Q) wp ¬ z : E )

this completes the proof for the case P. �

Using this result, or directly from its definition, we can now readily prove each
of the following rules for S �E which cover the syntactic forms that can be used
for an operation S at the specification level.

Name Rule Side Cond
Assumption (P � Q) � E = P ||| (true � Q) � E
Skip II � E = E
Assignment x := F � E = E [F/x ]
Guard g =⇒ S � E = g −→ S � E
Choice S � T � E = (S � E ), (T � E )
Choice from set (x :∈ A) � E = § a • a ∈ A −→ E [a/x ] a \ E
Seq Comp S ; T � E = S � T � E
Local Variable (var z .S .end z ) � E = § z • S � E z \ E

We limit ourselves to two examples of such proofs. The first is for assumption,
and in this case we work directly from the definition:

(P � Q) � E = P ||| true � Q � E

Proof. (P � Q) � E = “by definition of (P � Q) � E”

P ||| § s ′ •Q −→ E [s ′/s ] = “since for any bunch E , E = true ||| E”

P ||| (true ||| § s ′ •Q −→ E [s ′/s ]) = “by definition of (P � Q) � E”

P ||| (true � Q) � E �
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The second result we prove is for sequential composition, Here we make use of
Mussat’s proposition:

S ; T � E = S � T � E

Proof. Let z be a fresh variable, then:

z : S ; T � E = “proposition 1”

¬ (S ; T wp ¬ z : E ) = “by wp property of sequential composition”

¬ (S wp (T wp ¬ z : E )) = “ logic, ¬ ¬ a = a ”

¬ (S wp ¬ (¬ T wp ¬ z : E )) = “proposition 1”

¬ (S wp ¬ (z : T � E ) = “proposition 1”

z : S � T � E

Hence by extensionality the required result holds. �

7 Non-backtracking Choice and Cutting Short a Search

We can call upon mathematical constants to help us describe our programs. We
call these “abstract constants” if they appear only at the specification level, and
“concrete constants” if they appear at the implementation level, and therefore
need some representations in executable code.

For each type T we loosely define a concrete constant ichoiceT which is a
partial function whose domain is the finite non-empty subsets of T . The only
additional information we provide concerning this function is that for any set W
in its domain, ichoiceT (W ) ∈W . We write ichoice for ichoiceT in applications
of these functions since the particular function intended can be determined from
the type of its argument.

Now consider the following two ways of making a choice from W ∈ P T
and assigning this to a variable x : first x :∈ W and second x := ichoice(W ).
Both these assignments involve making a choice from a set, and in neither case
does our description detail exactly what the choice will be. Otherwise, however,
these choices are quite different. The first will generate alternative choices under
backtracking, the second is an irrevocable choice. We can compare them by
considering what happened if each of the choices is sequentially composed with
x = w =⇒ II. First the backtracking choice:

x :∈ W ; x = w =⇒ II � x = “sequential composition”

x :∈ W � x = w =⇒ II � x = “guard”

x :∈ W � x = w −→ II � x = “skip”

x :∈ W � x = w −→ x = “choice from a set”

§ x ′ • x ′ ∈W −→ (x = w −→ x )[x ′/x ] = “substitution”

§ x ′ • x ′ ∈W −→ (x ′ = w −→ x ′) = “property of guarded bunch”

§ x ′ • x ′ ∈W ∧ x ′ = w −→ x ′) = “x ′ = w”

w
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Here the operational interpretation is that if a choice of x :∈ W is made such
that x �= w , the false guard will provoke reverse execution and another choice
will be made. Eventually the choice x = w has to be made since w ∈W , so the
final result is w . Now consider the irrevocable choice:

x := ichoice(W ); x = w =⇒ II � x = “sequential composition”

x := ichoice(W ) � x = w =⇒ II � x = “guard”

x := ichoice(W ) � x = w −→ II � x = “skip”

x := ichoice(W ) � x = w −→ x = “assignment”

x = w −→ x [ichoice(W )/x ] = “substitution”

ichoice(W ) = w −→ ichoice(W )

Here the result is null unless ichoice(W ) = w , in which case it is w .
The use of irrevocable choice is sometimes desirable during a search. Consider

a Sodoku game solver for example. At each step we decide which square to
work with, and which number to put in that square. The square is best chosen
irrevocably, because we cannot fail to obtain a solution because of the choice of
square. The choice of number to place in the square however, could result in a
position from which no solution exists, so this choice must be provisional.

An important use of irrevocable choice is in giving a semantics to a back-
tracking search which will be curtailed on discovery of a certain condition P on
the set z of results obtained so far. The condition is checked after each result is
generated. If it is true, a “cut” is applied, which stops any further backtracking.
The results found so far are then returned. For this we use the notation S �z :P E .
Under the assumption of trm(S ) ∧ ∃ z .(z ∈ P {S � E} ∧ P) this has the value:

{S �z :P E} = ichoice {z | z ∈ P {S � E} ∧ P}
Thus, unlike Prolog, we are able to hide the use of cut and provide a descrip-

tion of its effect which does not compromise the rest of our semantics.

8 Conclusions and Future Work

In this paper we bring together the physics and the formal description of re-
versible computations. We are motivated by the desire to relate computation
both to the physical constraints imposed by the second law of thermodynamics
and the need to find tractable and expressive programming languages that are
amenable to incorporation within a formal development framework. Within this
framework there are many interesting issues we have been unable to develop
here, and we mention a few now.

The usual approach to refinement of sequential programs relies on the syntax
of the implementation level language to protect the user against over-refinement.
Due to this protection, the refinement lattice of programs can have magic as its
bottom (most refined) element, without any fear that any development will pro-
pose a miraculous implementation. In our approach we do not always have this
luxury, since naked guarded commands may introduce infeasibility. They do not
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always risk doing so however. When such a command occurs in the program S in
an expression {S � E}, it does not introduce infeasibility, since if S is infeasible
{S � E} (which is just an expression) is simply the empty set. Operations that
encapsulate provisional choice have their own special requirements; their refine-
ment must not entail any loss of choice. We cannot, for example, reduce the
choices available for a Knight’s move, and still expect to find a solution to the
Knight’s tour. As a result of such considerations it becomes necessary to show
how the program development process can be handled in a way that minimises
the need for extra proof obligations.

At a more theoretical level, the prospective value descriptions which we have
introduced appear general enough to provide a semantic foundation for comput-
ing in their own right. There are obvious relationships between potential values
and the predicative and wp formalisms. We propose to investigate these and
see whether PV descriptions are sometimes more tractable than the other forms.
In the spirit of UTP we will also investigate the healthiness conditions of the
PV formalism. Just as not all predicates over program states plus auxiliary vari-
ables represent computations, and we apply healthiness conditions to limit our
interest to those that do, not all transformations of value expressions represent
computations either. Once these healthiness conditions have been formulated it
will be interesting to see if they are a complete characterisation of PV semantics,
i.e. whether we can recover from them the definition of S � E .
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R Floyd and L Mussat, and also the useful comments of the anonymous referees.
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Appendix. Designs and Weakest Preconditions
In this appendix we relate Hoare/He designs to the wp calculus. We prove an
important lemma used in the paper and some other results which reinforce our
confidence in the definition of wp that we use.

The weakest precondition that a program S will establish a post-condition r
us given in by Hoare and He in [9] for a predicative program S as S wp r =
¬ (S ; ¬ r). The definition is given before designs are introduced, and needs some
modification to cope with non-termination, as can be seen from the following
successful attempt to prove the termination of abort =̂ false � Q .

We first simplify the definition of abort .

abort = false � Q = “defn of P � Q”

false ∧ ok ⇒ Q ∧ ok ′ = “logic, false ∧ a = false and false ⇒ a = true”

true

Now working from the given definition of wp :

trm abort = “defn of trm S”

abort wp true = “from defn of abort”

true wp true = “defn of wp ”

¬ (true; ¬ true) = “sequential composition”

¬ (∃ s ′′, ok ′′ • true ∧ false) = “logic”

¬ (∃ s ′′, ok ′′ • false) = “s ′′, ok ′′ \ false”
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¬ false = “logic”

true

We have proved is that abort always terminates, and our intention, of course, is
that it should never terminate. The problem is with the definition of S wp r .
We will therefore work with the following definition which was communicated to
us by S Dunne and which arose in his informal discussions with A Galloway.

Definition. (P � Q) wp r =̂ ¬ ((P � Q); ¬ (r ∧ ok))[true/ok ]

The following lemma is a re-expression of this definition:

Lemma 1. Let α(P � Q) = s, then:
(P � Q) wp r = ¬ (P ⇒ ∃ s ′′ • (Q [s ′′/s ′] ∧ ¬ r [s ′′/s ]))

Proof. (P � Q) wp r = “definition of wp ”

¬ (P � Q ; ¬ (r ∧ ok))[true/ok ] = “definition of P � Q ”

¬ (P ∧ ok ⇒ Q ∧ ok ′; ¬ (r ∧ ok))[true/ok ] = “sequential composition”

¬ ∃ s ′′, ok ′′ • ((P ∧ ok ⇒ Q [s ′′/s ′] ∧ ok ′′) ∧ ¬ (r [s ′′/s ] ∧ ok ′′))[true/ok ]

= “substituting true/ok ”

¬ ∃ s ′′, ok ′′ • ((P ⇒ Q [s ′′/s ′] ∧ ok ′′) ∧ ¬ (r [s ′′/s ] ∧ ok ′′))

= “ disjoining cases ¬ ok ′′ and ok ′′ ”

¬ ∃ s ′′ • (¬ P ∨ ((P ⇒ Q [s ′′/s ′]) ∧ ¬ r [s ′′/s ]))

= “logic, ¬ a ∨ b = a ⇒ b”

¬ ∃ s ′′ • (P ⇒ ((P ⇒ Q [s ′′/s ′]) ∧ ¬ r [s ′′/s ]))

= “logic, a ⇒ (a ⇒ b) ∧ c = a ⇒ b ∧ c”

¬ ∃ s ′′ • (P ⇒ Q [s ′′/s ′] ∧ ¬ r [s ′′/s ])

= “since s ′′ \ P”
¬ (P ⇒ ∃ s ′′ • (Q [s ′′/s ′] ∧ ¬ r [s ′′/s ])) �

Proposition 1. For any design P � Q define wpterm(P � Q) =̂ (P �
Q) wp true. Then: wpterm(P � Q) = P

This confirms that the view of termination provided by our definition of wp
accords with the idea of termination given by the assumption of a design.

Proof. wpterm(P � Q) = “Definition of wpterm”

(P � Q) wp true = “lemma 1”

¬ (P ⇒ ∃ s ′′ • (Q [s ′′/s ′] ∧ ¬ true[s ′′/s ]))

= “properties of substitution and logic”

¬ (P ⇒ ∃ s ′′ • (Q [s ′′/s ′] ∧ false)

= “logic, a ∧ false = false”

¬ (P ⇒ ∃ s ′′ • false)

= “since no existential quantification can satisfy false”
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¬ (P ⇒ false) = “ logic a ⇒ false = ¬ a”

¬ ¬ P = “logic ¬ ¬ a = a”

P �

Proposition 2. ¬ (P � Q) wp ¬ (s ′ = s) = (P ⇒ Q)

This confirms that the wp derivation of the commitment of a program (under its
assumption) agrees with the commitment given in the design. The qualification
“under its assumption” leads, in the total correctness framework of wp analysis,
to the commitment being extracted as P ⇒ Q rather than Q, reflecting the fact
that, outside of the assumption P, any result might be obtained.

Proof. ¬ (P � Q) wp ¬ (s ′ = s) = “Lemma 1”

¬ ¬ (P ⇒ ∃ s ′′ • (Q [s ′′/s ′] ∧ ¬ ¬ (s ′ = s)[s ′′/s ]))

= “substitution and logic”

(P ⇒ ∃ s ′′ • (Q [s ′′/s ′] ∧ s ′ = s ′′

= “one point rule”

P ⇒ Q [s ′′/s ′][s ′/s ′′]) = “substitution” P ⇒ Q �

Proposition 3. Assuming s ′ \ r, then:

((P � Q) wp r) = (P ∧ ∀ s ′ • (Q ⇒ r [s ′/s ]))

This is a development of lemma 1 for the case when s ′ \ r. The result is an
intuitively appealing representation of wp which, along with the previous propo-
sitions, confirms our confidence in our definition of wp .

Proof. (P � Q) wp r = ”lemma 1”

¬ (P ⇒ ∃ s ′′ • (Q [s ′′/s ′] ∧ ¬ r [s ′′/s ]))

= “change of bound variable name, s ′ \ (Q [s ′′/s ′] ∧ ¬ r [s ′′/s ])”

¬ (P ⇒ ∃ s ′ • (Q [s ′′/s ′][s ′/s ′′] ∧ ¬ r [s ′′/s ][s ′/s ′′]))

= “substitution”

¬ (P ⇒ ∃ s ′ • (Q ∧ ¬ r [s ′/s ]))

= “ logic, a ⇒ b = ¬ a ∨ b ”

¬ (¬ P ∨ ∃ s ′ • (Q ∧ ¬ r [s ′/s ]))

= “logic, de Morgan”

P ∧ ¬ ∃ s ′ • (Q ∧ ¬ r [s ′/s ]))

= “ logic, ¬ ∃ x • P = ∀ x • ¬ P”

P ∧ ∀ s ′ • ¬ (Q ∧ ¬ r [s ′/s ]))

= “logic, de Morgan”

P ∧ ∀ s ′ • ¬ Q ∨ r [s ′/s ]))

= “logic, de Morgan”

P ∧ ∀ s ′ •Q ⇒ r [s ′/s ])) �
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Abstract. This paper advocates a general approach to formal verification by
constructing property-oriented models. We instantiate the approach using tim-
ing properties, and construct a heterogeneous untimed model in which time is
abstracted away, so that we can verify timing properties in an untimed frame-
work. The correctness of property-oriented model construction is ensured by the
conformance of semantic and syntactic mappings.

1 Introduction

It has been noticed that a single software development method is not sufficient to solve
all types of problems found in complex software systems. The integration of software
development methods has been proposed and investigated in the recent years, for exam-
ple, the integration of state-modeling and process languages has become an active area
of research ( [19, 6, 1, 11]). Such blending of different notations can provide us more
powerful languages for specifying very complex software systems. Unified observation-
oriented models behind the integrated languages (like [14], [23]) can ensure the sound-
ness of the integration of different notations, and can be used as a reference document
for developing tool supports. However, such complete models are usually very compli-
cated and thus hard to use for the verification purpose.

Properties to be verified or analysed can be divided into different categories, each
kind of properties only refer to part of the whole observation model, such as safety
properties that are not time dependent, timing properties, deadlock-free properties. Re-
cent work [4] suggests a projection approach to the verification of timing properties.
The projection can be conducted in a syntax-directed manner, where the soundness
proof replies on a deep projection from the whole model to the sub-model, thus the
whole model should be built first, which is usually very time-consuming. Therefore, we
propose to construct (small) property-oriented models for the verification of any partic-
ular kind of properties. We shall guarantee that different property-oriented sub-models
can be integrated into the whole model in a later stage, where necessary. In this paper,
we elaborate this general idea using timing properties. We construct an untimed hetero-
geneous model, where time information is abstracted away, and handled by a special
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Timer process. With such a property-oriented model we can verify certain kind of tim-
ing properties using the simpler untimed model, either by model checking or theorem
proving. This greatly simplifies the verification process.

We demonstrate our approach using a small language CZ, which is a subset of the
combination of CSP [7] and Z [20]. It can be regarded as a subset of the Circus [21]
language, or a subset of another powerful specification language TCOZ [11]. We shall
focus on timing properties that can be described in programming languages, rather than
specification languages, like:

– the delay between two consecutive events should at least be t units of time;
– a program awaits an event at most t units of time before it does something else.

More general timing properties that can be described in specification languages but
difficult in programming languages, like deadline and waituntil in TCOZ, will not be
covered here.

This paper makes the following contributions:

– We propose a general approach to verification by constructing property-oriented
models for integrated formal languages.

– We demonstrate our approach in terms of timing properties. We build an untimed
model for the verification of real-time properties.

– We build a deep link between timed traces and untimed heterogeneous traces (with
timer events). From that, we can generate the provably-correct untimed model.

– We illustrate our approach through an alarm controller example.
– As a byproduct, we explore some healthiness conditions and interesting algebraic

laws for heterogeneous communicating processes.

The rest of the paper is organized as follows. Section 2 introduces the illustrative
example. Section 3 describes the language model. The approach is presented in detail
in Section 4, followed by related work and conclusion.

2 An Illustrative Example

In this section, we use a small example to illustrate a novel approach to the verification
of timing properties for reactive systems.

2.1 The Alarm Controller

The alarm system was first used in [9]. The system is a common alarm controller that
can be found in buildings and cars. The controller is connected to a sensor which detects
movements or changes in the environment monitored by the alarm. The controller oper-
ates in two modes: when disabled, it will ignore any disturbance detected by the sensor;
when enabled, the controller will sound an alarm when the sensor signals a disturbance.

There are two timing requirements on the alarm controller: the first states that after
the controller is enabled, there is a period of t1 units of time before a disturbance can
cause the alarm to ring. The period t1 permits a person to enable the alarm and then
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leave without causing it to sound. The second requirement states that when a detected
disturbance is received, the controller will wait for another period of t2 units of time
before activating the alarm. The period t2 leaves some time to the legal user to disable
it before it sounds.

Let us analyse the first timing requirement, that is, when the controller is enabled,
there is a delay of t1 units of time before it can receive any disturbance from its sensor.
As a first attempt, we can specify this requirement in terms of the following action:

R1 =̂ enable→ Wait t1; disturb → R

Notice the event enable indicates the alarm system is enabled, while the event disturb
denotes a disturbance detected by the sensor. At this moment, we ignore the subsequent
behaviour after a disturbance is received and simply use R to denote it.

The key idea of our approach is to separate timing properties from logical properties
by introducing a specific component, called Timer, to take care of the timing features.
Thus we can use existing untimed verification tools like model checkers to verify that
certain time properties are met, rather than construct a new tool for verification from
scratch.

For R1, we can transform it to the following untimed action:

R′
1 =̂ enable→ set!→ reset?→ disturb → R

The two new events set and reset are used to interact with the following Timer action:

Timer =̂ set?→ Wait t1; reset!→ Skip

Note that the Timer component is in charge of time control. It is activated by set signal,
and after t1 time elapses, it notifies the process R′

1 via signal reset.
To verify R1 meets the property that a disturbance can only be received after the

controller is enabled for t1 units of time (we refer to it as t1-delay property in what
follows), we only need to check the following untimed property for R′

1:

∀utr0, utr1, utr2 · ((utr = utr0 � 〈enable〉� utr1 � 〈disturb〉� utr2 ∧
utr1 � {enable, disturb} = 〈〉) ⇒ utr1 = 〈set, reset〉)

It states that there are only two timer events set and reset between an enable event and its
consecutive disturb event. The event set activates the timer, while reset deactivates the
timer, which indicates t1 time is passed. Together with the timer action, it ensures the
t1-delay property. Note that utr denotes the (untimed) trace, i.e. a sequence of events,
while utri’s are segments of the trace. Formal definitions will be given in a later section.

The soundness for the separation of timing features from logical features can be
specified in terms of the following equation:

R1 = (R′
1|[{set, reset}]|Timer)\{set, reset}

This can be easily proved using the expansion laws for parallel composition. The right
hand side is a parallel composition of an untimed action (R′

1) and a timer action (Timer)
which communicate with each other via two internal events set and reset (hidden from
outside). Such a parallel composition is the normal form we shall adopt for verification.
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2.2 The Normal Form

In this subsection, we shall deal with the complete specification for the alarm controller.
The complete timed specification for the alarm controller is given as follows.

Disable =̂ disable→ Skip
Running =̂ Disable � (disturb → Active)

Active =̂ Disable
t2
� (alarm → Disable)

Alarm =̂ μX • enable→ (Disable
t1
� Running); X

Note that event disable is used to disable the controller, event alarm signals the firing
of the alarm. For more flexibility, we allow the controller to be disabled at any point
during running. We use timeout constructs (defined later in Section 3.2) to capture this
requirement. Take Alarm as an example, once the controller is enabled, it is either dis-
abled (and then waits for enable again), or is ready to receive any disturbance after t1
(Running).

As explained in last subsection, we shall transform the timed specification Alarm to
a normal form composed of an untimed specification in parallel with a Timer action.

We shall use function Φ to abstract away timing features from a timed action. The
complete definition for Φ will be given when we present the syntax of the language.
The following is the result after applying it to the above specification.

Φ(Disable) =̂ disable→ Skip
Φ(Running) =̂ Φ(Disable) � (disturb → Φ(Active))

Φ(Active) =̂ set!t2 →
((disable→ halt!→ Skip) � (reset?→ alarm→ Φ(Disable)))

Φ(Alarm) =̂ μX • enable→ set!t1 →
((disable→ halt!→ Skip) � (reset?→ Φ(Running))); X

Note that a new timer event halt is used to stop the timer when event disable arrives
during the ticking of the clock. There are two timing requirements in the specification,
thus we design the general timer action as follows:

Timer =̂ μX • set?x→ ((halt?→ Skip) � (Wait x; reset!→ Skip)); X

Note that when the timer is set to work, a value is passed to it (stored in x) to indicate
the time duration that it should count before it generates a reset signal.

Now the timed specification Alarm is transformed to the following normal form:

(Φ(Alarm)|[{set, reset, halt}]|Timer)\({set, reset, halt}
The following theorem ensures the soundness of the abstraction.

Theorem 1. We have

Alarm = (Φ(Alarm)|[{set, reset, halt}]|Timer)\{set, reset, halt}
It is proved using algebraic laws for parallel expansion and hiding.
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2.3 Verification of Timing Properties in the Untimed Model

In this subsection we shall demonstrate that timing requirements can be verified in the
untimed framework.

There are two timing requirements for the alarm controller, namely,

– once enabled, the controller should wait at least t1 units of time before it can receive
any disturbance from the sensor.

– once a disturbance is received, the controller should wait at least t2 units of time
before it fires the alarm.

As timing is controlled by the timer actions in our normal form, we can abstract
away timing from the above requirements by adding in timer events that are in charge of
activating/deactivating the timers. The timing requirements are thus specified in terms
of timer events as follows:

R1(utr) =̂ ∀utr0, utr1, utr2 · (utr = utr0 � 〈enable〉� utr1 � 〈disturb〉� utr2 ∧
utr1 � {enable, disturb} = 〈〉)⇒ (utr1 = 〈set.t1, reset〉)

R2(utr) =̂ ∀utr0, utr1, utr2 · (utr = utr0 � 〈disturb〉� utr1 � 〈alarm〉� utr2 ∧
utr1 � {disturb, alarm} = 〈〉)⇒ (utr1 = 〈set.t2, reset〉)

The overall timing requirement for the alarm controller is thus as below:

Req(utr) =̂ R1(utr) ∧ R2(utr)

To verify the timed specification (Alarm) meets the timing requirements, we only
need to demonstrate that the untimed specification (Φ(Alarm)) meets the above require-
ment, that is, Φ(Alarm)⇒ Req(utr).

Theorem 2. Suppose Φ(Alarm) and Req(utr) are given as above, we have

|[Φ(Alarm)]| ⇒ Req(utr)

where |[P]| denotes the observation-oriented semantics for program P.

Proof. From the definition of Φ(Alarm),

Φ(Alarm) = P; Φ(Alarm)

where P =̂ enable→ set!t1 → ((disable → halt!→ Skip) � (reset?→ Φ(Running))).
Thus the semantic predicate |[Φ(Alarm)]| is subject to

|[Φ(Alarm)]| = |[P]|; |[Φ(Alarm)]|
That is, it is the fixed point of the equation X = μX · (|[P]|; X).

Note that we also use the operator (;) to represent the concatenation of two observa-
tional predicates. The formal definition is given in [8].

Due to the following fixed point theorem ([8]):

F(S) � S implies νX · F(S) � S

and the fact that there is only one fixed point in this case, we only need to prove

|[P]|; Req(utr)⇒ Req(utr)
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It is thus straightforward as all possible traces of P lie in the following set:

trace(P) = {〈enable, set.t1, disable〉, 〈enable, set.t1, disable, halt〉,
〈enable, set.t1, reset, disable〉, 〈enable, set.t1, reset, disturb, set.t2, disable〉,
〈enable, set.t1, reset, disturb, set.t2, disable, halt〉}
∪ {utr | utr � 〈enable, set.t1, reset, disturb, set.t2, reset, alarm, disable〉}

�

Note that the proof is much simpler and more straightforward in comparison with the
existing proof given in [9] due to the property-oriented model we use.

3 The Language

This section introduces our language CZ that we use to instantiate our method. We shall
give both the untimed and timed models.

3.1 The Untimed Model

The syntax for CZ is given in Fig. 1.

Action ::= Skip | Stop | Chaos
| Communication → Action | b&Action
| Action; Action | Action�Action | Action � Action
| Action|[E]|Action | Action\E | μX • Action
| Command

Command ::= x := e | Action � b � Action
Communication ::= c?[x] | c![e] | c[.e]

Fig. 1. CZ : the untimed model

Note that e represents an expression, while b a boolean expression. The set E denotes
channel names. The notation [u] indicates that term u is optional.

Skip is a basic action that terminates immediately. Stop represents an abnormal ter-
mination which simply puts a program in an ever waiting state. Chaos is the worst
action, nothing can be said about its behaviour. In a guarded action (b&Action), the
action is preceded by a predicate which has to be true for the action to take place, oth-
erwise the guarded action behaves as Stop. An internal choice between two actions
(Action�Action) selects one of the two actions in a non-deterministic manner, whereas
the external choice (Action�Action) waits for any of the two actions to interact with the
environment. The first action that interacts with the environment (either by synchronis-
ing on an event or terminating) is the resulting action.

The sequential composition of two actions (Action; Action) behaves as the first action,
followed immediately by the second action upon termination of the first. An action can
be prefixed with a communication event (input or output) which will take place before the
action starts. The action waits for the other actions that need to synchronise on the chan-
nel before the communication can take place. The parallel composition of two actions
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(Action|[cs]|Action) involves a set (cs) containing the events they need to synchronise
on. A hiding operation also takes a set of events (cs). The set is to be excluded from the
resulting observation of the action, hidden events can no longer be seen by other actions.

An observation-oriented model for the Circus language based on Hoare and He’s
Unifying Theories of Programming [8] is explored in detail in [23, 21], while the unified
model for TCOZ is reported in [14]. As our language CZ is a subset of the above two
languages, we can borrow the following observation variables from them.

– ok, ok′ : Boolean. When ok is true, it states that the program has started and ok′ =
true indicates that the program has terminated or is in an intermediate stable state.

– wait, wait′ : Boolean. When wait is true, the program starts in an intermediate state.
When wait′ is true the program has not terminated; when it is false, it indicates a
final observation.

– state, state′ are mappings from program variable names to values. The undashed
variable represents the initial valuation of the program variables, while the dashed
one denotes the valuation at the final observation.

– utr, utr′ : seq Event are the sequence of observations on the program’s interactions
with its environment. utr denotes the observations that occur before the program
starts, and utr′ the final observation. Each element of the sequence is an event.

– ref, ref′ : P Event stands for the set of events the program can refuse.

A single observation is given by the combination of the above variables. A program
is given as predicates over the observation variables. We give the semantics for basic ac-
tions and communication events in what follows to show the use of the above semantic
variables. Readers can refer to [23, 14] for the complete set of semantic definitions.

Basic Action. The semantics of the action Skip is given as a program that can only
terminate normally and has no interaction with the environment.

|[Skip]| =̂ ok′ ∧ ¬wait′ ∧ utr′ = utr ∧ state′ = state

The action Stop is given as a predicate that waits for ever; it does not change the
state.

|[Stop]| =̂ ok′ ∧ wait′ ∧ utr′ = utr

The assignment attributes a value to a variable in the current state. If the variable
does not exist it will be added, otherwise its value will be over written. The assignment
operation is instantaneous and does not consume time.

|[x := e]| =̂ ok′ ∧ ¬wait′ ∧ utr′ = utr ∧ state′ = state⊕ {x �→ e}

Note that we abuse the same e in the right hand side to denote the value of e in state.

Communication. An action can engage in a communication if all the other actions
involved in the same communication are ready to do so. We model this with the help
of two predicates. wait com(c) models the waiting state of an action to communicate
on channel c. The only possible observation is that the communication channel cannot
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appear in the refusal set during the observation period. term com(c.e) represents the act
of communicating a value e over a channel c.

wait com(c) =̂ ok′ ∧ wait′ ∧ c /∈ ref′ ∧ utr′ = utr
term com(c.e) =̂ ok′ ∧ ¬wait′ ∧ utr′ = utr � 〈c〉

The semantics of the output command is given below.

|[c!e]| =̂ wait com(c) ∨ term com(c.e) ∧ state′ = state

The input command can be defined in a similar manner.

|[c?x]| =̂ wait com(c) ∨ term com(c.e) ∧ state′ = state⊕ {x �→ e}
The semantics of the communication prefix can be given in terms of communication

and of the sequential composition. The action comm is either an input or an output
event, or an abstract event name.

|[comm → Action]| =̂ |[comm; Action]|

3.2 The Timed Model

The timed language TCZ extends the untimed language CZ with two new time operators
given in Fig. 2.

Action ::= · · ·
| Wait t (time delay)

| Action
t
� Action (timeout)

Fig. 2. TCZ: the timed model

The action (Wait t) will delay the system for an amount of time determined by
the positive integer expression t before terminating normally. The timeout construct

(Action
t
� Action) takes a positive integer value as the length of the timeout. The time-

out operator acts as a time guarded choice. It behaves as either the first or the second
action. If the first action performs an observable event or terminates before the speci-
fied time elapses, it is chosen. Otherwise, the first action will be suspended and the only
possible observations are those produced by the second action.

The semantics for the timed language is given with the same observation variables
ok, ok′, wait, wait′, state and state′, while the variables utr, utr′ and ref′ are replaced by
a new pair of variables ttr, ttr′ denoting communication traces in the timed model.

The variable ttr records the observations of communication events that occur before
the program starts, and ttr′ records the final observation. Each element of the sequence
represents an observation in one time unit. Each observation element is composed of a
tuple, where the first element of the tuple is the sequence of events that occur in the time
unit, and the second is the associated set of refusals at the end of the same time unit.

ttr, ttr′ : seq(seq Event× P Event)
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We maintain an auxiliary variable utr that represents a sequence of events that have
occurred since the last observation. In this observation we are interested in recording
only the events without time.

utr : seq Event
utr = flat(ttr′)− flat(ttr)

where flat : seq(seq Event× P Event)→ seq Event
flat(〈〉) = 〈〉
flat(〈el, ref〉� S) = el � flat(S)

We show the use of these new variables in the definition of the (Wait d) action. The
only possible behaviour for this action is to wait for the specified number of units of
time to pass before terminating immediately.

|[Wait d]|time =̂ ((ok′ ∧ wait′ ∧ (#ttr′ − #ttr) < d)
∨(ok′ ∧ ¬wait′ ∧ (#ttr′ − #ttr) = d)) ∧ utr = 〈〉

The timeout action can be defined in terms of external choice as in [17]. The follow-
ing is a direct definition.

|[P t
� Q]|time =̂ (P ∧ utr = 〈〉 ∧ #ttr′−#ttr ≤ t)∨

(∃k : #ttr < k ≤ #ttr+t, ∃t̃tr • π1(ttr′(k)) �= 〈〉 ∧ ttr � t̃tr ∧ #t̃tr−#ttr = k∧
(∀i : #ttr < i < #ttr+k • π1(ttr′(i)) = 〈〉 ∧ t̃tr(i) = ttr′(i)) ∧ P[t̃tr/ttr]) ∨
(∃t̃tr • ttr � t̃tr ∧ #t̃tr− #ttr = t∧
(∀i : #ttr < i < #ttr+t • π1(ttr′(i)) = 〈〉 ∧ t̃tr(i) = ttr′(i)) ∧ Q[t̃tr/ttr])

Note that if P is ready to react to the environment exactly when it has waited for time t,
the timeout process chooses P or Q non-deterministically.

Given the semantic model for a TCZ program, we can use the linking function given
in [17] to abstract away time information, and thus obtain the corresponding untimed
model. This abstraction is useful when we are interested in the verification of time-
independent safety properties. In this paper, we shall not elaborate on this aspect but
focus more on timing properties.

4 The Approach

This section is devoted to the general approach that we propose to the verification of
real-time systems. The verification framework is given in Fig. 3.

Fig. 3 shows us two different approaches. The first one is a top down approach
where we start with a timed program and we are interested in checking if the timed
program satisfies the time requirements. The second approach is a bottom up method
where we start with an untimed program and add time information where requested.
The need for the second one is due to the fact that system development is usually done
in stages, in the early stages of development the system designer concentrates on the
behaviourial/logical properties of the system, while leaving timing requirement to a
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later stage. Another aspect is that in some cases it is necessary to identify the hardware
used in the implementation to have a clear understanding of the time delays and time-
outs that can occur in the system and the points in which they may occur. In the rest of
this section we present our approach in detail.

4.1 The Validation Approach

This approach is concerned with the validation of the time requirements of the system
using the untimed model. Fig. 3 illustrates the steps for using the framework. The steps
to carry out the validation of the time requirements are summarised as follows.

– We start with a specification of our system in the timed model using the timed
version of the language. The system designer gives a complete description of the
system. All the operators of the language can be used at this stage including parallel
composition The timed semantic model of the language is used in this step.

– If we need to verify untimed safety properties, we can use an abstraction function
(e.g. the one given in [17]) to obtain an untimed version of the original specification.
Such an untimed program can be used to validate the behaviour requirements and
safety requirements that are not time dependent. We do not elaborate this aspect in
this paper.

– With the help of the normal form function Φ, we obtain a version of the program
that has the same semantics as the original program but contains internal timer
events. In this step the expansion laws should be used as well to remove all the
parallel compositions.

– Time requirements can be expressed in the untimed model with timer events. We
can use this untimed model to prove the design meets the time requirements. This
can be done using theorem provers or existing (untimed) model checkers.

4.2 The Normal Form

Usually timed programs are implemented with timers, this can be either the system
clock or a dedicated timer. Following the same criteria we give a normal form for the
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time operators. The implementation of the time operators is given as a timer and an
untimed program that is synchronised with the timer on dedicated events.

As mentioned above, the events set, halt, and reset are timer events, used by the
program to synchronise with and control a timer. The following is the timer program:

Timer =̂ μX • set?x→ ((halt?→ Skip)�(Wait x; (reset!→ Skip))); X

The timer is initiated with the event set which serves as a trigger. The behaviour of the
timer is as follows: after set by its environment, it waits for the set signal to set the
timer again if an interrupt event halt arrives before the timeout, or it emits a signal reset
and starts to wait for another set after it has counted for the designated period of time
(stored in x) set by the environment. The event reset is similar to other events used in
the language, whereas the events set and halt have special properties. We shall explore
these differences further in the next subsection.

Given the definition for a timer action, we aim to generate a function Φ that takes
as input a timed program and returns the corresponding untimed program with timer
events. That is, for any sequential program P, the function Φ should satisfy the following
equation:

(†) P = Φ(P) par Timer

Given actions X and Y, such that αX ∩ αY = {set, reset, halt},
X par Y =̂ (X |[{set, reset, halt}]| Y)\{set, reset, halt}

Note that in the action (X par Y), X behaves as a master action, while Y acts as a slave
action. The overall action terminates if and only if the master action X terminates.

As timers are not allowed to be shared by parallel actions, several timer actions are
needed in the equation (†) in case that P is a parallel action.

We shall first give a mapping ψ to abstract away time information from timed traces,
while adding timer events properly. This can be regarded as a deep semantic link be-
tween a timed process and a heterogeneous communicating process. We only need to
define the mapping ψ on maximal traces.

Definition 1. A timed trace ttr0 from a prefix-closed trace set is maximal, if for any
trace ttr1 that satisfies #ttr0 = #ttr1, and ∀i : 1..#ttr0 · π1(ttr0(i)) = π1(ttr1(i)), we
have ∀i : 1..#ttr0 · π2(ttr0(i)) ⊇ π2(ttr1(i)).

Definition 2. Given a set of timed traces TTR, and a single prefix s, we define a set of
timed traces “after” s as follows:

TTR/s =̂ {ttr | (s � ttr) ∈ TTR}
Given a trace ttr, we use pref(ttr) to denote the prefix-closed set of traces made out

of all prefixes of ttr. We extend it to a set of traces TTR as

pref(TTR) =̂
⋃
{pref(ttr) | ttr ∈ TTR}

Given two set of traces TTR1, and TTR2, the concatenation of them is given as

TTR1
� TTR2 =̂ {ttr1 � ttr2 | ttri ∈ TTRi, for i = 1, 2}
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Definition 3 (Semantic Mapping). Let A denote the maximal set of events of interest,
and A∗ denote the sequence closure over A. Given a set of maximal traces TTR, the
corresponding set of heterogeneous traces ψ(TTR) is defined as follows:

– TTR = {〈(〈√〉, X)〉}.
ψ(TTR) =̂ {〈√〉}.

– ∃ttr ∈ TTR · ∀i : 1≤i≤#ttr · π1(ttr(i)) = A∗ ∧ π2(ttr(i)) = A.
ψ(TTR) =̂ A∗.

– ∀ttr ∈ TTR · ∀i : 1≤i≤#ttr · π1(ttr(i)) = 〈〉 ∧ π2(ttr(i)) = A.
ψ(TTR) =̂ {〈〉}.

– TTR = pref(ttr), where ttr = 〈(〈〉,A), .., (〈〉,A)〉, and #ttr = n.
ψ(TTR) =̂ pref(〈set.n, reset〉).

– pref(ttr) ⊆ TTR, where ttr=〈(〈〉,A−C), .., (〈〉,A−C), (〈〉,A−C−B), (〈〉,A−B)〉,
#ttr = n+1, and B and C are finite sets of events, C = {c1, .., ck}.
Let ttri = 〈(〈〉,A−C), .., (〈〉,A−C)〉� 〈(si, Xi)〉, where head(si) = ci ∈ C, for
i = 1, .., k.
ψ(TTR) =̂ pref(〈set.n, reset〉) ∪ {〈set.n, reset〉� s | s ∈ ψ(TTR/ttr)} ∪⋃k

i=1( pref(〈set.n, ci, halt〉)
∪{〈set.n, ci, halt〉� tail(si) � s | s ∈ ψ(TTR/ttri)})

– For other cases, ψ(TTR) =̂ ∪ {flat(ttr) | ttr ∈ TTR}.
We assume that any sequential action can be written in the guarded normal form �n

i=1(ci →
Pi). We construct Φ as follows.

Definition 4 (Syntactic Mapping).

Φ(Skip) =̂ Skip
Φ(Chaos) =̂ Chaos

Φ(Stop) =̂ Stop
Φ(x := e) =̂ x := e

Φ(b&P) =̂ b&Φ(P)
Φ(P � b � Q) =̂ Φ(P) � b � Φ(Q)

Φ(Wait t) =̂ set!t→ reset?→ Skip
Φ(�k

i=1(ci → Pi)) =̂ �1≤i≤k(ci → Φ(Pi))
Φ(P�Q) =̂ Φ(P)�Φ(Q)

Φ(P � Q) =̂ Φ(P) � Φ(Q)
Φ(P; Q) =̂ Φ(P); Φ(Q)
Φ(P\E) =̂ Φ(P)\E

Φ((�n
i=1(ci→Pi))

t
�Q) =̂ set!t→((�n

i=1(ci→halt!→Φ(Pi)))� (reset?→Φ(Q)))
Φ(μX •�n

i=1(ci → Pi(X))) =̂ μX •�n
i=1(ci → Φ(Pi(X)))

Theorem 3. The syntactic mapping Φ conforms with the semantic mapping ψ. That is,
given any program P from TCZ, we have

ψ(|[P]|time) = |[Φ(P)]|
The proof is straightforward by a structural induction on P.

Theorem 4. The syntactic mapping Φ is a homomorphic solution to the equation (†).
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4.3 Algebraic Laws

The set of processes generated by function Φ are called as heterogeneous communicat-
ing processes (HCP). It can be regarded as an extension of Communicating Sequential
Processes (CSP) (if we ignore state features). It enriched CSP with timer events, thus
is also subject to the healthiness conditions for CSP (Chapter 8 of [8]). However, as
timer events have the same behaviour in both synchronous and asynchronous models, it
satisfies some additional healthiness conditions. These additional properties will yield a
subset of CSP processes. Therefore, although heterogeneous communicating processes
are an extension of CSP, they can be simulated by a subset of CSP.

We shall present the additional properties in what follows.

HC1 |[P]| ∧ utr � 〈set1, set2〉 � utr′ = |[P]| ∧ utr � 〈set2, set1〉 � utr′

It states that, if a heterogeneous communicating process sets two timers consecutively,
then it can set them in any order.

Similarly, we have the following healthiness conditions.

HC2 |[P]| ∧ utr � 〈set1, halt2〉 � utr′ = |[P]| ∧ utr � 〈halt2, set1〉 � utr′

HC3 |[P]| ∧ utr � 〈halt1, halt2〉 � utr′ = |[P]| ∧ utr � 〈halt2, halt1〉 � utr′

The following condition indicates that no heterogeneous communicating process can
refuse both events halt and reset simultaneously when the timer is activated.

HC4 |[P]| ∧ utr′ = utr0 � 〈set〉� utr1 ∧ utr1�{halt, reset}=〈〉 ⇒ {halt, reset} � ref′

In what follows, we give some expansion laws to transform a parallel action into a
sequential one. Take note that timer events play different roles from normal events.

In the following laws, we assume P and Q are already in guarded normal forms:
P = �n

i=1(ci → Pi), Q = �m
k=1(dk → Qk), where for all i, k, ci �= dk, and ci, dk

are not timer events. Let cs = (αP ∩ αQ)\{set, halt, reset}.
The following one is the standard expansion law where no timer events are involved.

Law 1 P|[cs]|Q =
{�i,k:ci=dk∈cs(ci → (Pi|[cs]|Qk))

��i:ci /∈cs(ci → (Pi|[cs]|Q))
��k:dk /∈cs(dk → (P|[cs]|Qk))

If timer events are involved, we should use the following expansion laws.

Law 2 (set1→P)|[cs]|(set2→Q) =
(set1→set2→(P|[cs]|Q)) � (set2→set1→(P|[cs]|Q))

Note that the two output events set1 and set2 can occur in any order, which is reflected
by the internal choice. So do the two halt events or a mix of them, as illustrated by the
following two laws.

Law 3 (set1→P)|[cs]|(halt2→Q) =
(set1→halt2→(P|[cs]|Q)) � (halt2→set1→(P|[cs]|Q))
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Law 4 (halt1→P)|[cs]|(halt2→Q) =
(halt1→halt2→(P|[cs]|Q)) � (halt2→halt1→(P|[cs]|Q))

The events set and halt from the master process have higher priority than the reset
event emitted by the slave process. This is reflected in the following two laws:

Law 5 (set1 → P)|[cs]|(reset2 → Q) = set1 → (P|[cs]|(reset2 → Q))

Law 6 (halt1 → P)|[cs]|(reset2 → Q) = halt1 → (P|[cs]|(reset2 → Q))

Law 7 (reset1 → P)|[cs]|(reset2 → Q) =
(reset1 → (P|[cs]|(reset2 → Q))) � (reset2 → ((reset1 → P)|[cs]|Q))

Take note that different from Law 2, external choice is used here as the two input
events reset1 and reset2 have to wait for the corresponding output events from the envi-
ronment (Timer processes).

5 Related Work and Conclusion

The two mostly related integrated formal specification languages are TCOZ [11] and
Circus [21]. Circus is a combination of CSP and Z. It also includes specification state-
ments found in Morgan’s refinement calculus [13] and Dijkstra’s language of guarded
commands [3]. Circus has a well-defined syntax and a formal semantics [23, 21] based
on Hoare and He’s unifying theories of programming [8]. Case studies using the lan-
guage are explored in [22] to show its power of expressiveness. A development method
for Circus using refinement is described in [15]. A timed model for Circus was provided
in [17]. Our untimed model CZ is a subset of Circus.

TCOZ is a blending of Object-Z [5, 18] and Timed CSP [16, 2], aiming at specifi-
cation for complex real-time systems. The semantic link between the two formalisms
Timed CSP and Object-Z is reported in [12]. TCOZ was enriched with sensors/actuators
in [10]. A unified observation model for TCOZ is presented in [14]. Recent work
[4] proposed a projection from TCOZ specifications to Timed Automata Patterns for
model-checking timing properties using UPPAAL. Their syntactical mapping is proved
sound under bisimulation. In our paper, we propose to verify timing properties in un-
timed framework by constructing a property-oriented untimed model, which, we be-
lieve, should be much simpler than doing it within the timed model.

Instead of using the same complex model as both semantic and reasoning mod-
els, we advocate the construction of small property-oriented models, that are sepa-
rated from the whole semantic model, for verification of particular kinds of
properties. In our instantiation in terms of timing properties, the approach does make
analysis and reasoning about certain timing properties simpler and easier. A deep se-
mantic link has been built between the timed model and the untimed model in the ob-
servation level, which ensures that it is safe to use a smaller property-oriented model for
verification.
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Abstract. This paper presents a mathematical investigation of the relationships
among a number of approaches for specification and refinement in two well-
known paradigms based on the idea of Unifying Theories of Programming: Hoare
and He’s designs and Dunne’s prescriptions. We present the technical analysis
in a proof-theoretic relational framework based on two-predicate schema spec-
ifications. This enables us to demonstrate the relationships among (what prima
facie seem to be) different models of refinement associated with each of these
paradigms.

1 Introduction

In this paper, we review a number of formalisms for specification and refinement; in
particular, we seek to explore the mathematical relationships among them. For this,
we use a logical framework which captures the properties of specifications, described
in some language of schema expressions, whose underlying model is relational. We
consider schema-based specifications in four different frameworks: a logic for Z-like
specifications, a logic for non-lifted-totalised specifications reminiscent of the one in-
troduced in [11], the logic given in [23] for specifications called designs and the logic
given in [15, 16] for specifications called prescriptions (both of which are interpreted as
predicates). We will deal here only with atomic schemas, namely unstructured schemas
involving no schema combinators.

We begin by introducing the semantics of schema specifications in a logical frame-
work similar to that of Z and the semantics of non-lifted-totalised specifications (sec-
tion 2). In addition to that, we provide two purely proof-theoretic characterisations of
refinement1 for schema-based specifications. We then introduce the concepts of both
specification and refinement in two schema-based paradigms based on the idea of UTP:
Hoare and He’s designs (section 3) and Dunne’s prescriptions (section 4). This enables
us to examine the nature of refinement in each of these two paradigms (section 5): for
each one, we develop a theory of refinement expressed in a purely homogeneous rela-
tional form and prove that it is equivalent to both the appropriate theory of refinement in
the paradigm in question and the appropriate purely proof-theoretic characterisation in-
troduced in section 2. We conclude the paper with some final comments and indications
of several directions for future investigation (section 6); these are mainly to do with the
interpretations of compound schema expressions and their impact on “stepwise” and
“piecewise” development by refinement in these paradigms.

1 Since we only deal here with operation-refinement, we will drop this qualification: unless we
specify otherwise, refinement is short for operation-refinement.

S. Dunne and W. Stoddart (Eds.): UTP 2006, LNCS 4010, pp. 101–122, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Our investigation takes place in ZC, the logic for Z reported in [21]. For techni-
cal convenience, we summarise few relevant features of this, and additional notational
conventions, in appendix A.

2 Specification and Refinement in a Z-Like Framework

2.1 The “Z” Interpretation

This paper is concerned with capturing a variety of specification and refinement
paradigms in a schema-based logical framework.2 In the following, we write Ui (etc.)
for [T | Pi | Qi ]. This is an atomic operation schema whose type is PT . T stands for
T in � T out ′ , where T in is the type of the before sub-bindings and T out ′ is the type
of the after sub-bindings. Since types can be recovered from the alphabets of P and Q
for atomic schemas, we can and will write [P | Q ] for [T | P | Q ] in the sequel (and
suppress types) where possible.3

The Z interpretation of atomic schemas is the following:

Definition 1.
�[P | Q ]�Z =df {z0 � z ′1 | z0.z ′1.(P ∧ Q )}

Membership in the Z interpretation is defined as follows:

Definition 2. �z ∈ZU �Z =df z ∈ �U �Z

The following introduction and elimination rules are derivable for specifications in the
Z interpretation:

Proposition 1.

t0.t ′1.P t0.t ′1.Q
t0 � t ′1 ∈ZU

(Z+)
t0 � t ′1 ∈ZU

t0.t ′1.P
(Z−0 )

t0 � t ′1 ∈ZU
t0.t ′1.Q

(Z−1 )
�

Note that this is, obviously, not quite the Z interpretation as introduced in its standard
[27] or in other accounts in the literature (e.g. [14], [28] and [4]): Z is based on an
underlying partial relation semantics that employs the “postcondition only” approach,
in which preconditions are logically induced as feasibility conditions. Conversely, the
above interpretation is based on (two-predicate) specifications whose preconditions and
postconditions are syntactically separated; this concept coincides with, and casts the
technical material in a similar style to, specifications in the UTP designs and prescrip-
tions paradigms.

2.2 Non-lifted-Totalised Specifications

Another important concept is the totalisation of specifications. The standard model for
Z is a partial relation semantics; the (de facto) standard notion of refinement in Z is
based on total correctness: it involves the process of relational completion often referred

2 Recall that we will deal only with atomic schemas.
3 We provide further notational conventions in appendix A.
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to as the lifted-totalisation semantics. This is a model-theoretic characterisation (that
mediates between the underlying Z semantics and the interpretation of refinement), in
which specifications (partial relations) are both completed (made total) and extended
by means of an additional semantic element, often known as “bottom” and written ⊥.
This approach was first introduced in [28] (chapter 16 et seq.) and further elaborated in
[4, ch.2-3]. In previous work (e.g. [10, 11, 8, 7, 6]), we examined carefully the essence
of the lifted-totalisation semantics, in general, and the mathematical (as well as the
conceptual) role of the ⊥ values, in particular, in model-theoretic refinement. In the
process, we demonstrated why a straightforward non-lifted-totalisation interpretation
cannot underlie any reasonable model-based theory of refinement in Z. We did show,
however, that a novel notion of what it means for a value to be in the precondition of
a specification leads to a non-lifted-totalisation interpretation which underlies a valid
theory of operation-refinement. Unfortunately, this cannot be generalised to any valid
theory of simulation-based data-refinement.4

The investigation of data-refinement is beyond the scope of this paper and it will need
to be examined carefully in the context of the technical material we explore here. In any
case, we shall demonstrate in the sequel that the (straightforward) interpretation of non-
lifted-totalised schema specifications, in the two-predicate model, lays a foundation
for a relational framework in which both UTP designs and UTP prescriptions can be
refined. This framework is free of auxiliary semantic elements [28] and propositional
auxiliary variables [23].

Definition 3. The interpretation of atomic non-lifted-totalised schemas:

�[P | Q ]�NLT =df {z0 � z ′1 | z0.z ′1.(P ⇒ Q )}

Membership in the non-lifted-totalisation interpretation is simply:

Definition 4. �z ∈NLTU �NLT =df z ∈ �U �NLT

The following rules are derivable for non-lifted-totalised specifications:

Proposition 2.

t0.t ′1.P � t0.t ′1.Q
t0 � t ′1 ∈NLTU

(NLT+)
t0 � t ′1 ∈NLTU t0.t ′1.P

t0.t ′1.Q
(NLT−)

�

The following additional rules are derivable for non-lifted-totalised specifications:

Lemma 1.

¬t0.t ′1.P
t0 � t ′1 ∈NLTU

(i)
t0.t ′1.Q

t0 � t ′1 ∈NLTU
(ii)

�

This interpretation is reminiscent of the semantics underlying Henson and Reeves’s
method for program development and specification refinement within a single Z-like
semantic framework [22]; though in ibid., the semantics of an atomic operation schema
is given in terms of a set of total functions, each of which takes any state satisfying the
precondition of the operation to a state satisfying its postcondition.

4 For further detail see [8],[7] and [6, ch.7].
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2.3 Proof-Theoretic Refinement

In this section we introduce two purely proof-theoretic characterisations of refinement
for (two-predicate) schema specifications. These are closely connected to refinement
as introduced by Spivey in, for example, [26] and as discussed in [24], [25] and [4].
In those contexts we do not so much have an alternative notion of refinement as two
sufficient conditions (essentially the premises of the introduction rules in propositions
3 and 4 below). By adding the two elimination rules we add necessary conditions, and
thus formalise an independent theory in each case.

These notions are based on two basic observations regarding the properties one
expects in a refinement: firstly, that a refinement may involve the reduction of non-
determinism; secondly, that a refinement may involve the expansion of the domain of
definition. Put another way, we have a refinement providing that postconditions do not
weaken (we do not permit an increase in non-determinism in a refinement) and that pre-
conditions do not strengthen (we do not permit requirements in the domain of definition
to disappear in a refinement).

We name these notions S-refinement and SP-refinement; each of them can be cap-
tured by forcing the refinement relation to hold exactly when these conditions apply.
S-refinement is written U0 	s U1 and is given by the definition that leads directly to the
following introduction and elimination rules:

Proposition 3. Let z , z0, z1 be fresh variables.

z .P1 � z .P0 z0.P1, z0.z ′1.Q0 � z0.z ′1.Q1

U0 	s U1
(	+s )

U0 	s U1 t .P1

t .P0
(	−s0

)
U0 	s U1 t0.P1 t0.t ′1.Q0

t0.t ′1.Q1
(	−s1

)

�

SP-refinement is written U0 	sp U1 and is given by the definition that leads directly to
the following rules:

Proposition 4. Let z , z0, z1 be fresh variables.

z .P1 � z .P0 z0.z ′1.Q0 � z0.z ′1.Q1

U0 	sp U1
(	+sp)

U0 	sp U1 t .P1

t .P0
(	−sp0

)
U0 	sp U1 t0.t ′1.Q0

t0.t ′1.Q1
(	−sp1

)

�

In the context of single-predicate schema specifications, S-refinement and SP-
refinement respectively represent refinement in the contractual and behavioural ap-
proaches [4]: the former represents a more sequential view in which preconditions may
be weakened in a refinement process, whereas the latter represents a more concurrent
view in which preconditions remain fixed.5

5 In our previous work, we respectively referred to these as the chaotic (e.g. [11, 8]) and the
abortive (e.g. [9] and [6, ch.5,9]) approaches.
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This is not the case when we consider specifications whose pre and postconditions
are syntactically separated. The behaviour imposed on preconditions is identical in
S-refinement and SP-refinement: weakening of preconditions is viable in both. The dif-
ference between them lies in the behaviour each of them imposes on postconditions:
both of them sanction strengthening of postconditions, yet SP-refinement is more strict
- it forbids weakening of postconditions; S-refinement, on the other hand, does not re-
strict the behaviour of postconditions in the region where the (initial) precondition does
not hold. We will demonstrate in section 5 that S-refinement is equivalent to refinement
in the UTP designs paradigm and SP-refinement is equivalent to refinement in the UTP
prescriptions paradigm.

3 UTP Designs

3.1 Background

In [23], Hoare and He develop a common framework for unifying theories of program-
ming. This framework is based on a total correctness setting in which a predicative
model is employed for modelling programs. In other words, what they are seeking to do
in ibid. is to model all programs as single homogeneous relations called designs, where
a relation here is simply a predicate over a given alphabet of variables. Furthermore,
in order to address behaviours that specifically concern with initiation and termination
of programs, the authors adopt an idea that originated from Eric Hehner [18]: they add
two auxiliary boolean variables, ok and ok’, to the alphabet of every relation; these
respectively record whether or not the program has started and terminated. In this way,
they retain the homogeneity of the relations.

In this section we rehearse the basic material concerning designs as described in [23],
recasting this in proof-theoretic and relational form in so doing. This reformulation
eases the comparisons we go on to make in the sequel and brings out some of the
structure implicit in [23].

3.2 Logic and Semantics

First we have designs themselves. These are written, by Hoare and He, as precondi-
tion/postcondition pairs: P � Q . In this paper, however, we need not overburden the
notation and simply give the Hoare-He design semantics for atomic schemas.

Definition 5. The interpretation of atomic schemas:

�[P | Q ]�H =df {z0 � z ′1 | ok ∧ z0.P ⇒ ok′ ∧ z0.z ′1.Q }

Note that this interesting definition establishes the meaning of schema (design) as
a parameterised relation: it depends on two propositional variables ok and ok’. We
will need to write U (u , v ′) in the language of specifications, to refer to certain sub-
stitutions for the parameters in the interpretation. Thus �U (u , v ′)�H is the relation
�U �H [ok/u , ok′/v ′]. With this notation in place we can define H-membership, not-
ing that U and U (ok, ok′) are equivalent:

Definition 6. �z ∈H U (u , v ′)�H =df z ∈ �U (u , v ′)�H
The rules for this, then, are also parameterised:
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Proposition 5.
ok, t0.P � ok′ ok, t0.P � t0.t ′1.Q

t0 � t ′1 ∈HU
(H+)

t0 � t ′1 ∈HU ok t0.P
ok′

(H−0 )
t0 � t ′1 ∈HU ok t0.P

t0.t ′1.Q
(H−1 )

�

These rules simplify in the various cases in which the two parameters take on values.
Proposition 6. The following rules are all derivable:

t0.P � t0.t ′1.Q
t0 � t ′1 ∈HU (t , t )

(H(tt)+)
t0 � t ′1 ∈HU (t , t ) t0.P

t0.t ′1.Q
(H(tt)−)

¬t0.P
t0 � t ′1 ∈H U (t , f )

(H(tf )+)
t0 � t ′1 ∈HU (t , f )

¬t0.P
(H(tf )−)

t0 � t ′1 ∈H U (f , t )
(H(ft))

t0 � t ′1 ∈H U (f , f )
(H(ff ))

�

H-refinement (refinement of designs) closes these relational expressions by quantifica-
tion over the propositional variables:

Definition 7.
�
U0 	H U1

�
H =df ∀ ok, ok′ • �U0�H ⊆ �U1�H

Though, H-refinement can be simplified as follows:
Proposition 7. U0 	H U1 ⇔�U0(t , t )�H ⊆�U1(t , t )�H ∧�U0(t , f )�H ⊆ �U1(t , f )�H
Proof. This follows from the observation that, when v is a propositional variable, ∀ v •
P (v ) is equivalent to P [v/t ] ∧ P [v/f ] and from the two degenerate axioms (H(ft)) and
(H(ff )). �

Thus, we have the following rules for H-refinement:
Proposition 8. Let z be fresh.

z ∈HU0(t , t ) � z ∈H U1(t , t ) z ∈H U0(t , f ) � z ∈H U1(t , f )
U0 	H U1

(	+H)

U0 	H U1 t ∈H U0(t , t )
t ∈H U1(t , t )

(	−H0
)

U0 	H U1 t ∈HU0(t , f )
t ∈HU1(t , f )

(	−H1
)

�

4 UTP Prescriptions

Another concept concerning UTP was developed by Steve Dunne of the University of
Teesside (UK) in seminal work reported in [15, 16]. In ibid., Dunne develops a predica-
tive model that generalises Hoare and He’s designs to a framework based on a general
correctness setting; specifications in this framework are called prescriptions.

In this section we introduce the technical material underlying prescriptions, recasting
it in our relational framework based on two-predicate schema specifications. We then
review some interesting properties of specification and refinement in this paradigm and
in comparison to UTP designs.
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4.1 Logic and Semantics

We begin with the definition of prescriptions. Akin to Hoare and He’s designs, these are
written in [15, 16] as precondition/postcondition pairs: P � Q . In the same manner as
in definition 5, we give Dunne’s prescription semantics for atomic schemas:

Definition 8.

�[P | Q ]�D =df {z0 � z ′1 | (ok ∧ z0.P ⇒ ok′) ∧ (ok′ ⇒ z0.z ′1.Q ∧ ok)}

Similarly to the interpretation of designs, we write �U (u , v ′)�D for the relation
�U �D [ok/u , ok′/v ′]; thus membership in the prescriptions interpretation is merely:

Definition 9. �z ∈DU (u , v ′)�D =df z ∈ �U (u , v ′)�D

Then the following rules are immediately derivable for prescriptions:6

Proposition 9.

ok, t0.P � ok′ ok′ � t0.t ′1.Q ok′ � ok
t0 � t ′1 ∈DU

(D+)

t0 � t ′1 ∈DU ok t0.P
ok′

(D−0 )
t0 � t ′1 ∈DU ok′

t0.t ′1.Q
(D−1 )

t0 � t ′1 ∈DU ok′

ok
(D−2 )

�

Likewise, we simplify these rules in the various instantiations of ok and ok’.

Proposition 10. The following rules are derivable:

t0.t ′1.Q
t0 � t ′1 ∈DU (t , t )

(D(tt)+)
t0 � t ′1 ∈DU (t , t )

t0.t ′1.Q
(D(tt)−)

¬t0.P
t0 � t ′1 ∈DU (t , f )

(D(tf )+)
t0 � t ′1 ∈DU (t , f )

¬t0.P
(D(tf )−)

t0 � t ′1 ∈DU (f , t )

false
(D(ft))

t0 � t ′1 ∈DU (f , f )
(D(ff ))

�

We are now in position to define the concept of prescriptions refinement. We name this
D-refinement, whose definition closes the relational expressions above by quantification
over the auxiliary variables:

Definition 10.
�
U0 	D U1

�
D =df ∀ ok, ok′ • �U0�D ⊆ �U1�D

Again, this notion can be simplified by the following proposition:

Proposition 11. U0	D U1⇔�U0(t , t )�D ⊆�U1(t , t )�D ∧ �U0(t , f )�D ⊆ �U1(t , f )�D

Proof. Similar to the proof of proposition 7. �

Therefore, thefollowingintroductionandeliminationrulesarederivableforD-refinement:

6 Again, note that U and U (ok, ok′) are equivalent.
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Proposition 12. Let z be fresh.

z ∈DU0(t , t ) � z ∈DU1(t , t ) z ∈DU0(t , f ) � z ∈DU1(t , f )
U0 	D U1

(	+D)

U0 	D U1 t ∈DU0(t , t )
t ∈DU1(t , t )

(	−D0
)

U0 	D U1 t ∈DU0(t , f )
t ∈DU1(t , f )

(	−D1
)

�

4.2 Some Interesting Properties

There are two very interesting properties that specifically characterise prescriptions.7

First, the prescription form �[P | Q ]�D is canonical in a sense that:

�[P0 | Q0]�D = �[P1 | Q1�D iff P0 = P1 and Q0 = Q1

This contrasts with Hoare and He’s design form �[P | Q ]�H which is not canonical
since, for example:

�[P | Q ]�H , �[P | P ⇒ Q ]�H and �[P | P ∧ Q ]�H

all represent the same design.
Secondly, the assortment of extreme specifications in Dunne’s framework induces a

very neat characterisation for prescriptions. Consider the definition of the four possible
extreme specifications in a two-predicate model:

Definition 11.

abort =df [false | false] chaos =df [false | true]
magic =df [true | false] chance =df [true | true]

And then the meaning of these in each of the two paradigms of designs and prescrip-
tions:8

Proposition 13.

�abort�H ≡ true �abort�D ≡ ¬ok′
�chaos�H ≡ true �chaos�D ≡ ok′ ⇒ ok
�magic�H ≡ ¬ok �magic�D ≡ ¬ok ∧ ¬ok′
�chance�H ≡ ok⇒ ok′ �chance�D ≡ ok′ ⇔ ok

�

Hence, we can observe that the following characterisation holds for prescriptions: D is
a prescription iff

magic 	 D 	 chaos

Namely, a prescription is any relation which fits within the sub-lattice between chaos
and magic; this is delineated in Fig. 1. This, of course, does not hold for the designs
paradigm because its assortment of extreme specifications is more confined: the speci-
fications chaos and abort are both equivalent to true.

7 The material in this section is based on the summary introduced in [15] and [16].
8 Note that chaos is named “anarchy” in [15, 16].
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Prescriptions

magic

chaos

true

false

Fig. 1. The lattice of prescriptions

5 A Basis for Unification: Equivalence of Refinement Theories

This section constitutes the core of our technical investigation. For each of the two
paradigms of designs and prescriptions, we will establish a theory of refinement which
involves simple relational operations on specifications in the Z and the non-lifted-
totalisation semantics (sections 2.1 and 2.2). Subsequently, we will demonstrate that
this theory is equivalent to both the appropriate theory of refinement in the paradigm
in question and the proof-theoretic characterisation of refinement for two-predicate
schema specifications (section 2.3). In doing this, we will bring together a number of
models for specification and refinement, which prima facie look radically different, and
demonstrate that they are in fact intimately related mathematically.

Methodologically, we shall be showing that all judgements of refinement in one the-
ory are contained among the refinements sanctioned by another. Such results can always
be established proof-theoretically because we have expressed all our approaches as the-
ories (sets of introduction and elimination rules). Specifically, we will show that the
refinement relation of a theory T0 satisfies the elimination rule (or rules) for refinement
of another theory T1. Since the elimination rules and introduction rules of a theory en-
joy the usual symmetry properties, this is sufficient to show that all T0-refinements are
also T1-refinements. Equivalence can then be shown by interchanging the roles of T0

and T1 in the above.

5.1 Designs Refinement

HH-Refinement. This notion is written U0 	HH U1 and given by the following defini-
tion:

Definition 12.

U0 	HH U1 =df �U0�NLT ⊆ �U1�NLT ∧
(�U0�NLT − �U0�Z ) ⊆ (�U1�NLT − �U1�Z )

The following rules are derivable for HH-refinement:

Proposition 14. Let z be fresh.

z ∈NLTU0 � z ∈NLTU1 z ∈NLTU0, z �ZU0 � z �ZU1

U0 	HH U1
(	+HH)
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U0 	HH U1 t ∈NLTU0

t ∈NLTU1
(	−HH0

)
U0 	HH U1 t ∈NLTU0 t �ZU0

t �ZU1
(	−HH1

)

�

H-Refinement and S-Refinement Are Equivalent. This result recasts Hoare and He’s
theorem 3.1.2 [23, p.77] in our mathematical framework. We begin by showing that H-
refinement satisfies the two S-refinement elimination rules.

Proposition 15. The following rule is derivable:

U0 	H U1 t0.P1

t0.P0

Proof.
¬t0.P0

(1)

t0 � t ′1 ∈HU0(t , f ) U0 	H U1

t0 � t ′1 ∈HU1(t , f )

¬t0.P1 t0.P1

false
t0.P0

(1)

�
Turning to the second elimination rule.

Proposition 16. The following rule is derivable:

U0 	H U1 t0.P1 t0.t ′1.Q0

t0.t ′1.Q1

Proof.

t0.P1

U0 	H U1

t0.t ′1.Q0

t0 � t ′1 ∈HU0(t , t)
(1)

t0 � t ′1 ∈HU1(t , t)

t0.t ′1.Q1

�
Then it is an immediate consequence that H-refinement is sound with respect to S-
refinement:

Theorem 1.
U0 	H U1

U0 	s U1

Proof. Follows directly from propositions 15 and 16, in addition to the rule (	+s ).9 �

Now we show that S-refinement satisfies the H-refinement elimination rules.

Proposition 17. The following rule is derivable:

U0 	s U1 t0 � t ′1 ∈H U0(t , t )

t0 � t ′1 ∈HU1(t , t )

9 The proofs of such theorems are always automatic by the structural symmetry between intro-
duction and elimination rules. We shall, therefore, not provide them explicitly.
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Proof.

U0 	s U1 t0.P1
(1)

t0 � t ′1 ∈HU0(t , t)
U0 	s U1 t0.P1

(1)

t0.P0

t0.t ′1.Q0

t0.t ′1.Q1

t0 � t ′1 ∈HU1(t , t)
(1)

�
And now the second elimination rule.

Proposition 18. The following rule is derivable:

U0 	s U1 t ∈H U0(t , f )
t ∈H U1(t , f )

Proof.
U0 	s U1 t0.P1

(1)

t0.P0

t0 � t ′1 ∈HU0(t , f )

¬t0.P0

false
¬t0.P1

(1)

t0 � t ′1 ∈HU1(t , f )

�
Then the following theorem immediately follows, by (	+H), from propositions 17 and
18; namely, H-refinement is complete with respect to S-refinement:

Theorem 2.
U0 	s U1

U0 	H U1

�

Together, theorems 1 and 2 establish that the theories of H-refinement and S-refinement
are equivalent.

H-Refinement and HH-Refinement Are Equivalent. We begin by showing that HH-
refinement satisfies the two H-refinement elimination rules. For this, we will require
an auxiliary lemma demonstrating that HH-refinement guarantees that preconditions do
not strengthen (i.e. it satisfies the rule (	−s0

)).

Lemma 2. The following rule is derivable:

U0 	HH U1 t0.P1

t0.P0

Proof.

U0 	HH U1

¬t0.P0
(1)

t0 � t ′1 ∈NLTU0
(L. 1(i))

¬t0.P0
(1)

t0 � t ′1 �ZU0

t0 � t ′1 �ZU1

¬t0.P1 ∨ ¬t0.t ′1.Q1

¬t0.P1
(2)

t0.P1

false

δ....
false

false
(2)

t0.P0
(1)
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Where δ stands for the following branch:

U0 	HH U1

¬t0.P0
(1)

t0 � t ′1 ∈NLTU0
(L. 1(i))

t0 � t ′1 ∈NLTU1 t0.P1

t0.t ′1.Q1 ¬t0.t ′1.Q1
(2)

false

�
Now considering the first H-refinement elimination rule.

Proposition 19. The following rule is derivable:

U0 	HH U1 t ∈H U0(t , t )
t ∈H U1(t , t )

Proof.

U0 	HH U1

t0 � t ′1 ∈HU0(t , t)
U0 	HH U1 t0.P1

(1)

t0.P0
(L. 2)

t0.t ′1.Q0

t0 � t ′1 ∈NLTU0
(L. 1(ii))

t0 � t ′1 ∈NLTU1 t0.P1
(1)

t0.t ′1.Q1

t0 � t ′1 ∈HU1(t , t)
(1)

�
Turning now to the second elimination rule in H-refinement.

Proposition 20. The following rule is derivable:

U0 	HH U1 t ∈H U0(t , f )
t ∈H U1(t , f )

Proof.

U0 	HH U1

t0 � t ′1 ∈HU0(t , f )

¬t0.P0

¬t0.P1
(L. 2)

t0 � t ′1 ∈HU1(t , f )

�
Then by propositions 19 and 20, in addition to the rule (	+H), we get the following
theorem immediately:

Theorem 3.
U0 	HH U1

U0 	H U1

�

We now show that H-refinement satisfies the two HH-elimination rules.
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Proposition 21. The following rule is derivable:

U0 	H U1 t ∈NLTU0

t ∈NLTU1

Proof.

U0 	H U1

t0 � t ′1 ∈NLTU0

U0 	H U1 t0.P1
(1)

t0.P0
(P. 15)

t0.t ′1.Q0

t0 � t ′1 ∈HU0(t , t)
(2)

t0 � t ′1 ∈HU1(t , t) t0.P1
(1)

t0.t ′1.Q1

t0 � t ′1 ∈NLTU1
(1)

�
Now the second elimination rule in HH-refinement.

Proposition 22. The following rule is derivable:

U0 	H U1 t ∈NLTU0 t �ZU0

t �ZU1

Proof. Consider the following derivation which requires the the law of excluded middle
(tertium non datur):

t0 � t ′1 �ZU0

¬t0.P0 ∨ ¬t0.t ′1.Q0

U0 	H U1 ¬t0.P0
(1)

¬t0.P1
(P. 15)

t0 � t ′1 �ZU1

δ....
t0 � t ′1 �ZU1

t0 � t ′1 �ZU1
(1)

Where δ stands for the following branch:

t0.P1 ∨ ¬t0.P1
(LEM)

β....
t0 � t ′1 �ZU1

¬t0.P1
(2)

t0 � t ′1 �ZU1

t0 � t ′1 �ZU1
(2)

Where β is:

t0 � t ′1 ∈NLTU0

U0 	H U1 t0.P1
(2)

t0.P0
(P. 15)

t0.t ′1.Q0 ¬t0.t ′1.Q0
(1)

false
t0 � t ′1 �ZU1

�
Then by propositions 21 and 22, as well as the rule (	+HH), the following theorem is
immediately derivable:

Theorem 4.
U0 	H U1

U0 	HH U1

�
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Theorems 3 and 4 together establish that the theories of H-refinement and HH-refinement
are equivalent. Despite their superficial dissimilarity, H-refinement, HH-refinement and
S-refinement are all equivalent to one another. Not only these results reinforce theo-
rem 3.1.2 in [23], they also demonstrate that the ideas of specification and development
(by stepwise, and piecewise, refinement), in the UTP designs paradigm, can be unified
within a homogeneous relational framework which involves neither the introduction of
auxiliary semantic elements, nor the deployment of auxiliary propositional variables.

5.2 Prescriptions Refinement

DD-Refinement. In the following, we write U †i (etc.) for the schema [Qi | Pi ]; thus,
DD-refinement is written U0 	DD U1 and given by the following definition:

Definition 13.

U0 	DD U1 =df (
�
U †1
�
NLT
−
�
U †1
�
Z

) ⊆ (
�
U †0
�
NLT

−
�
U †0
�
Z

) ∧
(�U0�NLT − �U0�Z ) ⊆ (�U1�NLT − �U1�Z )

The following rules are derivable for DD-refinement:

Proposition 23. Let z be fresh.

z ∈NLTU †1 , z �ZU †1 � z ∈NLTU †0 z ∈NLTU0, z �ZU0 � z ∈NLTU1

z ∈NLTU †1 , z �ZU †1 � z �ZU †0 z ∈NLTU0, z �ZU0 � z �ZU1

U0 	DD U1
(	+DD)

U0	DD U1 t∈NLTU†1 t�ZU†1
t ∈NLTU †0

(	−DD0
)

U0 	DD U1 t ∈NLTU †1 t �ZU †1
t �ZU †0

(	−DD1
)

U0	DD U1 t∈NLTU0 t �ZU0

t ∈NLTU1
(	−DD2

)
U0	DD U1 t∈NLTU0 t�ZU0

t�ZU1
(	−DD3

)

�

D-Refinement and SP-Refinement Are Equivalent. This result formalises, in our
mathematical framework, Dunne’s informal summary given in [16]. Using our usual
strategy involving elimination rules, we begin by showing that D-refinement is sound
with respect to SP-refinement. Firstly, the rule for preconditions.

Proposition 24. The following rule is derivable:

U0 	D U1 t0.P1

t0.P0

Proof. The proof is identical to the proof of proposition 15, modulo the following sub-
stitutions: ∈D replaces ∈H and 	D replaces 	H .

�
Now the rule for postconditions.
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Proposition 25. The following rule is derivable:

U0 	D U1 t0.t ′1.Q0

t0.t ′1.Q1

Proof.

U0 	D U1

t0.t ′1.Q0

t0 � t ′1 ∈DU0(t , t)

t0 � t ′1 ∈DU1(t , t)

t0.t ′1.Q1

�
Then by propositions 24 and 25, in addition to the rule (	+sp), the following theorem is
immediate:

Theorem 5.
U0 	D U1

U0 	sp U1

�

Turning now to showing the D-refinement is complete with respect to SP-refinement.

Proposition 26. The following rule is derivable:

U0 	sp U1 t ∈DU0(t , t )

t ∈DU1(t , t )

Proof.

U0 	sp U1

t0 � t ′1 ∈DU0(t , t)

t0.t ′1.Q0

t0.t ′1.Q1

t0 � t ′1 ∈DU1(t , t)

�
Now the second elimination rule in D-refinement.

Proposition 27. The following rule is derivable:

U0 	sp U1 t ∈DU0(t , f )

t ∈DU1(t , f )

Proof. The proof is identical to the proof of proposition 18, modulo the following sub-
stitutions: ∈D replaces ∈H , 	sp replaces 	s and the application of (	−sp0

) replaces
the application of (	−s0

).
�

This leads directly to the following theorem:

Theorem 6.
U0 	sp U1

U0 	D U1

�

Theorems 5 and 6 together establish that D-refinement and SP-refinement are equivalent.
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D-Refinement and DD-Refinement Are Equivalent. We begin by showing that DD-
refinement satisfies the two D-refinement elimination rules. Similarly to the counterpart
investigation in the designs framework (section 5.1), one of these results relies on an
auxiliary lemma demonstrating that DD-refinement guarantees that preconditions do
not strengthen (i.e. satisfies the rule (	−sp0

)).

Lemma 3. The following rule is derivable:

U0 	DD U1 t0.P1

t0.P0

Proof. The bulk of the proof is identical to the proof of lemma 2. That is, the ba-
sic derivation is, mutatis mutandis, identical to its counterpart: 	DD replaces 	HH .
Where δ proof branch is:

¬t0.t ′1.Q1
(2)

U0 	DD U1

¬t0.P0
(1)

t0 � t ′1 ∈NLTU0
(L. 1(i))

¬t0.P0
(1)

t0 � t ′1 �ZU0

t0 � t ′1 ∈NLTU1 t0.P1

t0.t ′1.Q1

false

�
Now considering the first elimination rule in D-refinement.

Proposition 28. The following rule is derivable:

U0 	DD U1 t ∈DU0(t , t )
t ∈DU1(t , t )

Proof. Consider the following derivation which requires the law of excluded middle:

¬t0.t ′1.Q1 ∨ t0.t ′1.Q1
(LEM)

δ0....
t0.t ′1.Q1 t0.t ′1.Q1

(1)

t0.t ′1.Q1
(1)

t0 � t ′1 ∈DU1(t , t)

Where δ0 stands for the following branch:

β0....
¬t0.t ′1.Q0 ∨ ¬t0.P0

¬t0.t ′1.Q0
(2)

t0 � t ′1 ∈DU0(t , t)

t0.t ′1.Q0

false
t0.t ′1.Q1

β1....
t0.t ′1.Q1

t0.t ′1.Q1
(2)

Where β0 is:

U0 	DD U1

¬t0.t ′1.Q1
(1)

t ′1 � t0 ∈NLTU †1
(L. 1(i))

¬t0.t ′1.Q1
(1)

t ′1 � t0 �ZU †1
t ′1 � t0 �ZU †0

¬t0.t ′1.Q0 ∨ ¬t0.P0
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and β1 is:

¬t0.P0
(2)

U0 	DD U1

¬t0.t ′1.Q1
(1)

t ′1 � t0 ∈NLTU †1
(L. 1(i))

¬t0.t ′1.Q1
(1)

t ′1 � t0 �ZU †1
t ′1 � t0 ∈NLTU †0

t0 � t ′1 ∈DU0(t , t)

t0.t ′1.Q0

t0.P0

false
t0.t ′1.Q1

�
Turning to the second elimination rule in D-refinement.

Proposition 29. The following rule is derivable:

U0 	DD U1 t ∈DU0(t , f )
t ∈DU1(t , f )

Proof.

U0 	DD U1

t0 � t ′1 ∈DU0(t , f )

¬t0.P0

¬t0.P1
(L. 3)

t0 � t ′1 ∈DU1(t , f )

�
Then by propositions 28 and 29, in addition to the rule (	+D), we get the following
theorem immediately:

Theorem 7.
U0 	DD U1

U0 	D U1

�

We now demonstrate that D-refinement satisfies the four DD-refinement elimination
rules.

Proposition 30. The following rule is derivable:

U0 	D U1 t ∈NLTU †1 t �ZU †1
t ∈NLTU †0

Proof.

t ′1 � t0 �ZU †1
¬t0.P1 ∨ ¬t0.t ′1.Q1

¬t0.P1
(2)

t ′1 � t0 ∈NLTU †1

δ....
t0.t ′1.Q1

t0.P1

false
t0.P0

¬t0.t ′1.Q1
(2)

δ....
t0.t ′1.Q1

false
t0.P0

t0.P0
(2)

t ′1 � t0 ∈NLTU †0
(1)
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Where δ stands for the following branch:

U0 	D U1

t0.t ′1.Q0
(1)

t0 � t ′1 ∈DU0(t , t)

t0 � t ′1 ∈DU1(t , t)

t0.t ′1.Q1

�
Now the second elimination rule in DD-refinement.

Proposition 31. The following rule is derivable:

U0 	D U1 t ∈NLTU †1 t �ZU †1
t �ZU †0

Proof. Consider the following derivation which requires the law of excluded middle:

t0.t ′1.Q0 ∨ ¬t0.t ′1.Q0
(LEM)

β....
t ′1 � t0 �ZU †0

¬t0.t ′1.Q0
(1)

t ′1 � t0 �ZU †0
t ′1 � t0 �ZU †0

(1)

Where β is:

t ′1 � t0 �ZU †1
¬t0.P1 ∨ ¬t0.t ′1.Q1

¬t0.P1
(2)

t ′1 � t0 ∈NLTU †1

δ....
t0.t ′1.Q1

t0.P1

false
¬t0.t ′1.Q0

¬t0.t ′1.Q1
(2)

δ....
t0.t ′1.Q1

false
¬t0.t ′1.Q0

¬t0.t ′1.Q0
(2)

t ′1 � t0 �ZU †0

and δ is identical to δ branch in the proof of proposition 30.
�

Turning to the third elimination rule in DD-refinement.

Proposition 32. The following rule is derivable:

U0 	D U1 t ∈NLTU0 t �ZU0

t ∈NLTU1

Proof.

t0 � t ′1 �ZU0

¬t0.P0 ∨ ¬t0.t ′1.Q0

¬t0.P0
(2)

U0 	D U1 t0.P1
(1)

t0.P0
(P. 24)

false
t0.t ′1.Q1

δ....
t0.t ′1.Q1

t0.t ′1.Q1
(2)

t0 � t ′1 ∈NLTU1
(1)
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Where δ stands for the following branch:

¬t0.t ′1.Q0
(2)

t0 � t ′1 ∈NLTU0

U0 	D U1 t0.P1
(1)

t0.P0
(P. 24)

t0.t ′1.Q0

false
t0.t ′1.Q1

�
And, finally, the fourth elimination rule in DD-refinement.

Proposition 33. The following rule is derivable:

U0 	D U1 t ∈NLTU0 t �ZU0

t �ZU1

Proof. The proof is, mutatis mutandis, identical to the proof of proposition 22: 	D
replaces 	H and the applications of proposition 24 replace proposition 15.

�
Then by propositions 30, 31, 32 and 33, in addition to the rule (	+DD), the following
theorem is immediately derivable:

Theorem 8.
U0 	D U1

U0 	DD U1

�

Together, theorems 7 and 8 establish that the theories of D-refinement and DD-
refinement are equivalent. Therefore, D-refinement, DD-refinement and SP-refinement
are all equivalent. Once again, we have demonstrated that the concepts of specification
and refinement in the UTP prescriptions paradigm can be unified within a homogeneous
relational framework without any artificial auxiliary mechanisms.

6 Conclusions and Further Work

In this paper, we have analysed the mathematical relationships amongst a number of for-
malisms using a proof-theoretic relational framework based on two-predicate schema
specifications. In particular, we have conducted an examination of the concepts of spec-
ification and refinement in two paradigms based on the idea of UTP: Hoare and He’s
designs [23] and Dunne’s prescriptions [15, 16]. We have shown that the theory of re-
finement in each of the two paradigms is related to both an appropriate proof-theoretic
characterisation of refinement for two-predicate schema specifications and a certain
theory of refinement expressed in a purely homogeneous relational form.

What we have not examined here is the way compound schema expressions are in-
terpreted in these formalisms and the manner in which refinement interacts with such
expressions. Z provides a very rich calculus of schema operations for structuring spec-
ifications in a modular manner, but none of these operators is monotonic with respect
to its standard notion of refinement; this has a major effect on their usefulness in the
context of program development. The reasons for this deficiency are explored in great
detail in [13], [12] and [6, ch.6]. However, there is a very interesting way which enables
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us to rehabilitate monotonicity in schema-based formalisms: we could take the interpre-
tation of designs (definition 5) or the interpretation of prescriptions (definition 8) as the
semantics for atomic schemas and then introduce interpretations for compound opera-
tion schema expressions by recursion over their structure using (almost) the standard
relational operations. In this way, refinement could then be the subset relation on the
semantics and the calculus of schema operations would be (trivially) fully-monotonic.

There are various examples of formalisms which employ a similar strategy: the
model described in [22] is an example of this where the interpretation of atomic opera-
tion schemas is taken to be sets of permissible implementations, [17] is closely related to
an example in which the underlying semantics is given by a weakest
precondition semantics and νZ [19, 20] is an example of this where the underlying in-
terpretation is taken to be Woodcock’s lifted-totalisation semantics [28].

There are two major ramifications to this approach. Firstly, the fundamental rela-
tion here is refinement (as opposed to equality in Z); equality would then appear as
inter-refinability. Secondly, partiality in this model denotes over-constrained specifi-
cations (i.e. magic), whereas all partiality in Z (arising from either under-constrained
or over-constrained specifications) is interpreted as chaotic divergence (including ⊥).
Therefore, the nature of the schema operations in this approach is different: the op-
erations no longer express exactly their usual informal semantics. These changes are
explored, to a certain extent, in νZ. Nonetheless, much work remains to be done both
at the level of infrastructure and at the pragmatic level. Furthermore, it would be very
interesting to explore the relationship between νZ and a similar approach based on de-
signs/prescriptions as the underlying interpretation.
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A Specification Logic - A Synopsis

In this appendix, we will summarise only few relevant features of the Z-logic, settling
some notational conventions in the process. This is included for convenience only and
the reader may wish to consult [21] and [11] for a more leisurely treatment of our
notational and meta-notational conventions.

Our analysis takes place in the “Church-style” version of the Z-logic due to Henson
and Reeves, namelyZC [21]. This provides a convenient basis, in particular a satisfac-
tory logical account, upon which the present work can be formalised.
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ZC is a typed theory in which the types of higher-order logic are extended with
schema types whose values are unordered, label-indexed tuples called bindings. For
example, if the Ti are types and the zi are labels (constants) then: [· · · zi : Ti · · ·] is a
(schema) type. Values of this type are bindings, of the form: 〈| · · ·zi�ti · · · |〉, where the
term ti has type Ti .

The symbols �, �, � and − denote the schema subtype relation, and the opera-
tions of schema type intersection and (compatible) schema type union and schema
type subtraction. Binding selection, written t .x, is axiomatised so that, for example:
〈| x�2, y�3 |〉.x = 2. Selection generalises so that t .P denotes the predicate P in
which each observation x is replaced by t .x. We let U (with diacriticals when neces-
sary) range over atomic operation schemas of the form [T | P | Q ]. These are sets of
bindings linking, as usual, before observations with after observations. We also permit
binding concatenation, written t0 � t1, when the alphabets of t0 and t1 are disjoint:

Definition 14. Suppose that li � kj (0 ≤ i ≤ n , 0 ≤ j ≤ m).

〈| l0�t0 · · · ln�tn |〉� 〈| k0�s0 · · · km�sm |〉=df 〈| l0�t0 · · · ln�tn , k0�s0 · · · km�sm |〉

This is, in fact, exclusively used for partitioning bindings in operation schemas into
before and after components, so the terms involved are necessarily disjoint.
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Abstract. The increasing interest in the combination of different com-
putational paradigms is very well represented by Hoare & He in the
Unifying Theories of Programming. In this paper, we present a mech-
anisation of part of that work in a theorem prover, ProofPower-Z; the
theories of alphabetised relations, designs, reactive and CSP processes
are in the scope of this paper. An account of how this mechanisation
is done, and more interestingly, of what issues were raised and of our
decisions, is presented here. We aim at providing tool support for fur-
ther explorations of Hoare & He’s unification, and for the mechanisation
of languages based on this unification. More specifically, Circus, a spec-
ification language that combines Z, CSP, specification statements, and
Dijkstra’s guarded command language is our final target.

Keywords: Unifying Theories of Programming, theorem prover.

1 Introduction

Researchers have concentrated their interest in the combination of programming
paradigms, which consider different aspects and stages of software development.
Hoare & He did one of the most significant works towards unification [9]. In
the Unifying Theories of Programming (UTP), they use Tarski’s relational cal-
culus to give a denotational semantics to constructs from several programming
paradigms. Relations between an initial and a subsequent observation of com-
puter devices are used to give meaning to specifications, designs, and programs.
Observational variables and associated healthiness conditions characterise theo-
ries for imperative, communicating, or sequential processes and their designs.

Following this trend of research, Circus [21, 2] combines a model-based lan-
guage, Z [22], a process algebra, CSP [8], Dijkstra’s language of commands, and
specification statements [10]. It differs from other combinations [19, 16, 5, 20] in
that it has an associated refinement theory [2, 14, 13]. The mechanical proof of
more than one hundred refinement laws requires the mechanisation of the Circus
semantics, and will be the basis for its theorem prover. In previous work [21],
we define a Z semantics for Circus. Although usable for reasoning about systems
specified in Circus, it is not appropriate to prove properties of the language itself.

In early work [18], Sherif and He present a time model for Circus. Qin et.al. [15]
used the UTP to formalise the semantics of TCOZ and capture some of its new
features for the first time. This semantics is being used as a reference document
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c© Springer-Verlag Berlin Heidelberg 2006



124 M. Oliveira, A. Cavalcanti, and J. Woodcock

in the development of tools for TCOZ and as a semantics foundation for proving
soundness of these tools. Woodcock and Hughes use the UTP model [23] in order
to give a formal semantics to a programming language that contains shared
variables. Our work provides mechanical support not only to Circus, but also to
any language that has the UTP as its theoretical basis.

In recent work [3], we summarise the alphabetised relational calculus, and the
theory of precondition-postcondition specifications, called designs. A detailed
theory for reactive processes is presented, and then combined with the theory of
designs, to provide the model for CSP. By mechanising the theories of reactive
processes and CSP, we enable a further exploration on these results.

We present here the first step towards mechanising the Circus semantics and
the proof of its refinement laws: the mechanisation of the UTP in the theorem
prover ProofPower-Z [1]. The definitions of the theories of relations, designs,
reactive processes, and CSP, and more than three-hundred and seventy theorems,
is the result of our work. Many issues arose from the existence of an alphabet
and from our intention of proving refinement laws; we discuss them here.

Section 2 presents the UTP and ProofPower-Z. In Section 3, we discuss design
issues and describe the theory hierarchy we created. Section 4 describes the
mechanisation of the UTP relations, designs, reactive processes, and CSP. The
proof of one theorem illustrates our approach. Finally, in Section 5, we draw our
conclusions and describe future work.

2 Preliminaries: UTP and ProofPower-Z

The UTP is a framework based on an alphabetised extension of Tarski’s rela-
tional calculus. Every program, design, and specification is interpreted in the
UTP as a relation between an initial observation and a single subsequent ob-
servation, which may be either an intermediate or a final observation of the
behaviour of a program execution. The relations are defined as predicates over
observational variables. The initial observations of each variable are undecorated,
and subsequent observations are decorated with a dash.

Several theories share common ideas; sequential composition, conditional,
nondeterminism, and parallelism are some of them. Refinement is interpreted
as inclusion of relations: reverse implication. Every relation is a pair (αP ,P),
where αP is the alphabet: set of observational variables that can be free in the
predicate P . Healthiness conditions are used to test a specification or design
for feasibility, and reject it, if it makes implementation impossible in the tar-
get language. They are often expressed in terms of an idempotent function φ
that makes a program healthy. Every healthy program P must be a fixed point
P = φP).

Figure 1 presents how some UTP theories [9] are related. Relations are predi-
cates with an input and an output (dashed) alphabet. Designs are specifications
written in terms of pre and postconditions. Reactive processes are programs
whose behaviour may depend on interactions with an environment.
Finally, CSP processes is a failures-divergences model for CSP, enriched with
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Fig. 1. Theories in the UTP

state; they can be characterised as relations that result from applying R to
designs.

ProofPower-Z is a higher-order tactic based theorem prover implemented us-
ing New Jersey SML, that supports specifications and proofs in Z. It extends
ProofPower-HOL, which builds on ideas arising from research at the Univer-
sities of Cambridge [7] and Edinburgh [6]. Some of the extensions provided
by the New Jersey SML were used in ProofPower-Z, in order to achieve fea-
tures such as a theory hierarchy, extension of the character set accepted by the
metalanguage ML, and facilities for quotation of object language (Z or HOL)
expressions, and for automatic pretty-printing of the representation of such ex-
pressions.

As it is an extension of ProofPower-HOL, definitions can be made using Z,
HOL, and even SML, which is the input command language. ProofPower-Z also
offers the possibility of defining proof tactics, which can be used to reduce,
and modularise proofs. Among other analysis support, ProofPower-Z provides
syntax and type checking, schema expansion, precondition calculation, domain
checking, and general theorem proving. Using the subgoal package, goals can be
split in simpler subgoals. The Z notation used in ProofPower-Z is almost the
same as that of the Z standard. We explain the differences as needed.

ProofPower-Z comes with a large number of verified theories. However, as
it supports a powerful logic, the level of automation is lower than in theo-
rem provers that support, for example, first-order logic. On the other hand,
it has been successfully used in industry, and was a natural choice as a basis
for a Circus theorem prover, as it is routinely used by our industrial partner:
QinetiQ.



126 M. Oliveira, A. Cavalcanti, and J. Woodcock

3 Design Issues

This section describes the issues raised during the automation of the UTP. The
first difficulty that we faced was that the name of a variable is used to refer both
to the name itself and to its value. For instance, in the relation ({x}, x = 0), the
left-most x indicates the name x , while the right-most x stands for the value of
x . We make explicit the difference between a variable name and a variable value.

We discarded the option of giving an axiomatic semantics to relations, since we
would not be able to use most of the theorems that are built-in in ProofPower-Z
to reason about sets and other models. Our relations are pairs of sets.

Since we want to prove refinement laws, our mechanisation gives the possi-
bility of expressing and proving meta-theorems. A shallow-embedding, in which
the mapping from language constructs to their semantic representation is part of
the meta-language, would not allow us to express such theorems. We use a deep-
embedding, where the syntax and the semantics of the alphabetised relations
is formalised inside the host language. The deep-embedding has the additional
advantage of providing the possibility of introducing new predicate combinators.

The syntax of relations and designs could be expressed as a data type (Z free
types), say PRED , for the relations. In this case, the semantics would be given
as a partial ( �→) function f : PRED �→ PRED . If we took this approach, most
of the proofs would be by induction over PRED . Any extension to the language
would require proving most of the laws again. Instead, we express the language
constructors as functions; this is a standard approach in functional languages.
Extensions require only the definition of the new constructors, and that they
preserve any healthiness conditions; no proofs need to be redone.

Using SML as a meta-language would not give us a deep-embedding. We were
left with the choice of Z or HOL. If we used HOL as meta-language, reusing the
definitions of Z constructs would not be possible, because they are written in
SML. Because of our knowledge of Z, and the expressiveness of its toolkit, we
have used Z as our meta and target language.

In Figure 2, we present our hierarchy of theories. In order to handle sequences,
we extend the ProofPower-Z’s theory z-library; the result is utp-z-library. The
theory utp-rel is that of general UTP relations. It includes basic alphabetised
operators like conjunction and existential quantification; relational operators like
alphabet extension, sequential composition, and skip; and refinement. Like all
our theories, it includes the operator definitions and their laws.

Two theories inherit from utp-rel : utp-okay is concerned with an observational
variable okay, and utp-wtr with wait , trace, and ref . These are the main variables
of the theory of reactive processes. The theory utp-okay is the parent of utp-des,
the theory for designs. Along with utp-wtr, utp-okay is also the parent of the
reactive processes theory (utp-rea), which redefines part of utp-rel. The theory
for CSP processes, utp-csp, inherits from both utp-rea and utp-des. The theory
for Circus (utp-circus) inherits from utp-csp; it is under development. Our proofs
of the laws of a theory does not expand definitions of its parent theory; it uses
the parent’s laws. This provides modularisation and encapsulation.
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Fig. 2. Theories in the UTP

4 Mechanisation

In this section we describe in detail our ProofPower-Z theories. For the sake of
presentation, we do not present the Z generated by the ProofPower-Z document
preparation tool, which has an awkward indentation for expressions. Instead, we
present a better indented copy of the pretty-printed ProofPower-Z expressions.

4.1 Relations

A name is an element of the given set [NAME ]. Each relation has an alphabet
of type ALPHABET =̂ P NAME (the Z abbreviation N == A is provided as
N =̂ A in ProofPower-Z; it gives a name N to the mathematical object A).
Every alphabet a contains an input alphabet of undashed names, and an out-
put alphabet of dashed names. Instead of using free types, which would lead
to more complicated proofs in ProofPower-Z, we use the injective (�) function
dash : NAME � NAME to model name decoration. The set of dashed names is
defined as the range of dash. The complement of this set is the set of undashed
names; hence, names are either dashed or undashed , but multiple dashes is al-
lowed. For the sake of conciseness, we omit the definitions of the functions in a
and out a, which return the input and the output alphabets of a given alphabet.
All the definitions and proof scripts can be found elsewhere [12].

An alphabet a in which n ∈ a ⇔ n ′ ∈ a, for every undashed name n, is called
homogeneous . For us, n ′ is mechanised as dash n. Similarly, a pair of alphabets
(a1, a2) is composable if n ∈ a2⇔ n ′ ∈ a1, for every undashed name n.

A value is an element of the free-type VALUE , which can be an integer, a
boolean, a set of values, a sequence of values, a pair of values, a channel, or a
special synchronisation value.
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VAL ::= Int(Z) | Bool(BOOL) | Set(PVAL) | Seq(seq VAL)
| Pair(VAL × VAL) | Channel(NAME ) | Sync

In ProofPower-Z, Bool(BOOL) stands for the Z constructor Bool〈〈BOOL〉〉,
which introduces a collection of constants, one for each element of the set BOOL.
The ProofPower-Z type BOOL is the booleans. The type VAL can be extended
without any impact on the proofs.

Although we are defining an untyped theory, the observational variables have
types; for instance, okay is a boolean. For this reason, we specify some types; for
instance, booleans are in the set BOOL VAL =̂ {Bool(true),Bool(false)}, chan-
nels are in the set CHANNEL VAL =̂ {n : NAME • Channel(n)}, and events
are in the set EVENT VAL =̂ {c : CHANNEL VAL; v : VAL • Pair(c, v)}.

Three definitions allow us to abstract from the syntax of expressions. The
set of relations (↔) between values is RELATION =̂ VAL↔ VAL. The set of
unary functions is UNARY F =̂ VAL �→ VAL; similarly, for binary functions
we have the set BINARY F =̂ (VAL × VAL) �→ VAL, which defines the set of
partial functions from pairs of values to values. For instance, the sum function
is {(Int(0), Int(0)) �→ Int(0), (Int(0), Int(1)) �→ Int(1), . . .}. An expression can
be a value, a name, a relation, or a unary or binary function application.

EXP ::= Val(VAL) | Var(NAME ) | Rel(RELATION × EXP × EXP)
| Fun1(UNARY F × EXP) | Fun2(BINARY F × EXP × EXP)

The definitions for unary functions, binary functions, and relations only deal
with values; Fun1(f , e) can only be evaluated once e is evaluated to some VAL.

A binding is defined as BINDING =̂ NAME �→ VAL, and BINDINGS is the
set of bindings. Given a binding b and an expression e with free-variables in the
domain (dom) of b, Eval(b, e) gives the value of e in b (beta-reduction). A rela-
tion is modelled in our work by the type REL PRED defined below. Basically,
a relation is a pair: the first element is its alphabet, and the second is a set of
bindings, which gives us all bindings that satisfy the UTP predicate modelled
by the relation. The domain of the bindings must be equal to the alphabet. Op-
tional models in which this restriction could be relaxed are possible; however,
they would lead us to more complex definitions as we discuss in Section 5. The
set-comprehension {x : s | p • e} denotes the set of all expressions e such that
x is taken from s and satisfies the condition p. Usually, e contains one or more
free occurrences of x . The true condition and the constructor x may be omitted.

REL PRED =̂
{a : ALPHABET ; bs : BINDINGS | (∀ b : bs • dom b = a) • (a, bs)}

This follows directly from the definition of alphabetised predicates of the UTP.
In our work, we use Z axiomatic definitions, which introduce constrained

objects, to define our constructs. For instance, let us consider the following ax-
iomatic definition.

x : s

p
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It introduces a new symbol x , an element of s , satisfying the predicate p.
Our first construct represents the truth. For a given alphabet a, TrueR a is

defined as the pair with alphabet a, and with all the bindings with domain a.

TrueR : ALPHABET → REL PRED

∀ a : ALPHABET • TrueR a = (a, {b : BINDING | dom b = a})
In our work, we subscript the constructs in order to make it easier to identify to
which theory they belong to; we use R for the theory of relations.

Nothing satisfies false: the second element of FalseR a is the empty set.

FalseR : ALPHABET → REL PRED

∀ a : ALPHABET • FalseR a = (a, ∅)

This operator is the main motivation for representing relations as pairs. If we
had defined relations just as a set of bindings with the same domain a, which
would be considered as the alphabet, we would not be able to tell the difference
between FalseR a1 and FalseR a2, since both sets would be empty. Besides, it is
important to notice the difference between TrueR ∅ and FalseR ∅: the former
has a set that contains one empty set of bindings as its second element, and the
latter has the empty set as its second element.

As we are working directly with the semantics of predicates, we are not able to
give a syntactic characterisation of free variables. Instead, we have the concept
of an unrestricted variable.

UnrestVar : REL PRED → P NAME

∀ u : REL PRED •
UnrestVar u = {n : u.1 | ∀ b : u.2; v : VAL • b ⊕ {n �→ v} ∈ u.2}

For a relation u, a name n from its alphabet is unrestricted if, for every binding
b of u, all the bindings obtained by changing the value of n in b are in u. In Z,
f ⊕ g stands for the relational overriding of f with g; furthermore, t .n refers to
the n-th element of a tuple t .

All usual predicate combinators are defined. Conjunctions and disjunctions
extend the alphabet of each relation to the alphabet of the other. The function
⊕R is alphabet extension; the values of the new variables are left unconstrained.
In the following definition we make use of the Z domain restriction A � R: it
restricts a relation R : X ↔ Y to a set A, which must be a subset of X , ignoring
any member of R whose first element is not a member of A.

⊕R : REL PRED × ALPHABET → REL PRED

∀ u : REL PRED ; a : ALPHABET
• u ⊕R a = (u.1 ∪ a, {b : BINDING | (u.1 � b) ∈ u.2 ∧ dom b = u.1 ∪ a})

The conjunction is defined as the union of the alphabets and the intersection
of the extended set of bindings of each relation.
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∧R : REL PRED × REL PRED → REL PRED

∀ u1, u2 : REL PRED •
u1 ∧R u2 = (u1.1 ∪ u2.1, (u1⊕R u2.1).2 ∩ (u2 ⊕R u1.1).2)

The definition of disjunction is similar, but the union of the extend set of bindings
is the result. We have proven that these definitions are idempotent, commutative,
and associative, and that they distribute over each other. We have also proven
that TrueR is the zero for disjunction and the unit for conjunction; similar laws
were also proved for FalseR. However, restrictions on the alphabets must be
taken into account. For example, we have the unit law for conjunction. The
ProofPower-Z output notation n � t gives name n to a theorem t . Besides, in Z,
the quantification ∀ x : a | p • q corresponds to the predicate ∀ x : a • p ⇒ q.

REL True ∧R id thm1
� ∀ a : ALPHABET ; u : REL PRED | a ⊆ u.1 • u ∧R TrueR a = u

As expected, the conjunction of a relation u with TrueR is u, but the alphabet
of TrueR must be a subset of the alphabet of u. Otherwise, the conjunction may
have an alphabet other than that of u and the theorem does not hold.

The negation of a relation r does not change its alphabet. Only those bindings
b that do not satisfy r (b /∈ r .2) are included in the resulting bindings. For the
sake of conciseness, we omit the trivial definitions of implication ( ⇒R ),
equivalence ( ⇔R ), conditional ( �R �R ), that can be trivially be defined
in terms of the previously defined operators.

The function −R removes variables from the alphabet of a relation using do-
main anti-restriction (domain removal) to remove names from the set of bindings.
It is defined as u −R a = (u.1 \ a, {b : u.2 • a −� b}). Complementary to domain
restriction, the domain anti-restriction A−� R, ignores any member of R, whose
first element is a member of A. Existential quantification ∃−R simply removes
the quantified variables from the alphabet and changes the bindings accordingly.

∃−R : (ALPHABET × REL PRED)→ REL PRED

∀ a : ALPHABET ; u : REL PRED • ∃−R(a, u) = u −R a

Universal quantification ∀−R(a, u) is defined as ¬ R ∃−R(a,¬ Ru).
In the definition of the CSP SKIP , Hoare and He seem to use another exis-

tential quantification, in which the quantified variables are not removed from the
alphabet. We define this new quantifier ∃R(a, u) as (∃−R(a, u)) ⊕ a. Basically,
we remove the quantified variables from the alphabet and include them again,
leaving their values unrestricted.

Our sequential composition u1; u2 is not defined as in the UTP [9], an ex-
istential quantification on the intermediary state; the motivation is simplifying
our proofs. In the UTP definition [9], the existential quantification is described
using new 0-subscripted names to represent the intermediate state. Its mechani-
sation requires two functions: one for creating new names, and another one for
expressing substitution of names. Any proof on sequential composition would
require induction on both functions.
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Relations can only be combined in sequence if their alphabets are composable.
If we defined sequential composition as a partial function, domain checks would
be required during proofs. Instead, we define a total function on well-formed
pairs of relations, WF SemiR, which have composable alphabets.

;R : WF SemiR → REL PRED

∀ u1 u2 : WF SemiR •
u1 u2.1 ;R u1 u2.2 =

(in a u1 u2.1.1 ∪ out a u1 u2.2.1,
{b1 : u1 u2.1.2; b2 : u1 u2.2.2
| (∀n : dom b2 | n ∈ undashed • b2(n) = b1(dash n))
• (undashed � b1) ∪ (dashed � b2)})

The alphabet of a sequential composition is composed of the input alphabet of
the first relation and the output of the second relation. For each pair of bindings
(b1,b2) from u1 and u2, respectively, we make a combination of all input values
in b1 (undashed names) with output values in b2(dashed names). However, only
those pairs of bindings in which the final values of all names in b1 correspond to
their initial values in b2 are taken into consideration in this combination.

The UTP defines an alphabet extension that enables sequential composition to
be applied to operands with non-composable alphabets. The function +R differs
from ⊕R in that it restricts the value of the new name to be left unchanged. For
a given predicate P and name n, it returns the predicate P ∧R (n ′ ={n′,n} n).

Although useless for practical purposes, the Π (skip) is very useful for rea-
soning about programs. In our work it is defined as the function defined below.
Given a well-formed alphabet a, it does not change the alphabet and returns
all the bindings b with domain a, in which for every undashed name n in a,
b n = b n ′. The type WF SkipR is the set of all homogeneous alphabets.

ΠR : WF SkipR → REL PRED

∀ a : WF SkipR •
ΠR a = (a, {b : BINDING

| dom b = a
∧ (∀n : a | n ∈ undashed • b(n) = b(dash n))})

Other programming constructs like variable blocks and assignments are also
included in this theory; their definitions can also be found in [12].

We now turn to the definition of refinement as the universal implication of
relations. The universal closure used in UTP [9] is defined 〈R u 〉R = ∀−R(u.1, u).
For a pair of relations (u1,u2), such that (u1, u2)∈WF REL PRED PAIR (both
have the same alphabet), we have that u1 is refined by u2, if, and only if, for all
names in their alphabets, u2 ⇒ u1. This is expressed by the definition below.

!R : WF REL PRED PAIR → REL PRED

∀ u1 u2 : WF REL PRED PAIR •
u1 u2.1 !R u1 u2.2 = 〈R (u1 u2.2⇒R u1 u2.1) 〉R
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We have proved that our interpretation of refinement is, as expected, a partial
order [12]. Moreover, the set of relations with alphabet a is a complete lattice.

Only functions f : REL PRED �→ REL PRED whose domain is a set of
relations with the same alphabet are considered in the theory of fixed points. We
call the set of such functions REL FUNCTION . The definition of the weakest
fixed point of a function f : REL FUNCTION is standard. The greatest fixed
point is defined as the least upper bound of the set {X | X ! f (x )}. This is
different from Hoare and He’s definition [9], which is not convenient for proofs.
However, it is trivial to prove that we have an equivalent definition.

4.2 Proving Theorems

We have built a theory with more than two-hundred and seventy laws on al-
phabets, bindings, relational predicates, and laws from the predicate calculus.
In what follows, we illustrate our approach in their proofs.

The proof of one of our laws is shown in Figure 3: the weakest fixed point
law (∀F ,Y • F (Y ) ! Y ⇒ μF ! Y ). We set our goal to be the law we want
to prove using the SML command set goal . It receives a list of assumptions and
the proof goal. In our case, since we are not dealing with standard predicates,
we must explicitly say that relations are TrueR.

We start our proof by rewriting the Z empty set definition (rewrite tac) and
stripping the left-hand side of the implication into the assumptions (z strip tac).
The SML command a applies a tactic to the current goal; the tactical REPEAT
applies the given tactic as many times as possible. The next step is to rewrite the
definition of least fixed point in the conclusion: we use forward chaining in the
assumptions (all asm fc tac), giving our Z definition of least fixed point as argu-
ment, and use the new assumption to rewrite the conclusion(asm rewrite tac).

The application of a previously proved theorem, REL lower bound thm, con-
cludes our proof. However, it requires some assumptions, before being applied.
We introduce them in the assumption list using the tactic lemma tac. The first
condition is that Y is an element of the set of relations u, with an alphabet
a, such that F (u) !R u. We use the tactical PC T1 to stop ProofPower-Z
from rewriting our expression by using the proof context initial , which is the
most basic proof context. Furthermore, to avoid a new subgoal, we use the tac-
tical THEN 1 that applies the tactic in the right-hand side to the first subgoal
generated by the tactic in the left-hand side. In our case, this proves that the
assumption we are introducing is valid. The validity of the introduction of the
first assumption is proved using the tactic asm prove tac, a powerful tactic that
uses the assumptions in an automatic proof procedure. Next, after introducing
the first condition explained above in the list of assumptions, we use forward
chaining again to state the fact that the alphabet of Y is a.

The next step introduces the fact that the set to which Y belongs is in fact a
set of REL PRED . The proof of the validity of this assumption uses ProofPower-
Z’s proof context z sets ext , an aggressive complete proof context for manip-
ulating Z set expressions. The last assumption that is needed is the fact that
the pair composed by the alphabet a and the set to which Y belongs, is indeed
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SML SML
set goal([ ], �Z∀F : REL FUNCTION ;

Y : REL PRED
| Y ∈ dom F

∧ (F(Y ) 	R Y = TrueR∅)
•μ R(F) 	R Y = TrueR∅ � );

a (rewrite tac[ ]);
a (REPEAT z strip tac);
a (all asm fc tac[z get spec �Z μR �]);
a (asm rewrite tac[ ]);
a ( (PC T1 “initial”

lemma tac
�ZY ∈ {u : REL PRED
| a =u.1 ∧ F u	R u =TrueR{}} � )

THEN1 (asm prove tac[ ]) );
a (all asm fc tac[ ]);

a ( (lemma tac
�Z{u : REL PRED
| a = u.1 ∧ F u 	R u = TrueR{}}
∈ P REL PRED � )

THEN1 (PC T1 “z sets ext” asm prove tac[ ]) );
a ( (lemma tac

�Z(a, {u : REL PRED
| a = u.1 ∧ F u 	R u = TrueR{}})

∈ WF GlbR LubR � )
THEN1
((rewrite tac[z get spec �ZWF GlbR LubR � ])

THEN
(PC T1 “z sets ext” asm prove tac[ ])) );

a (apply def REL lower bound thm
�Z(a=a, u=Y ,

us={u : REL PRED
| a = u.1 ∧ F u 	R u = TrueR{}}) � );

Fig. 3. Proof script for the weakest fixed point theorem

of type WF GlbR LubR, which contains all set of pairs (a, bs), in which every
binding in the set bs has a as its alphabet. Its proof rewrites the conclusion using
the Z definition of WF GlbR LubR, and then, uses the tactic asm prove tac in
the z sets ext proof context. Finally, we use a tactic defined by us, apply def , to
instantiate the theorem REL lower bound thm with the given values. The tac-
tic apply def instantiates the given theorem with the values given as arguments,
and tries to rewrite the conclusion, using this instantiation.

ProofPower-Z has provided us with facilities that resulted in a rather short
proof, for a quite complex theorem. Some of the facilities we highlight are forward
chaining, use of existing and user-defined tactics, proof contexts, and automated
proof tactics, such as asm rewrite tac.

4.3 Okay and Designs

The UTP theory of pre and postcondition pairs (designs) introduces an extra
observational variable okay: it indicates that a program has started, and okay ′

indicates that the program has terminated. In our theory utp-okay, we define
okay as an undashed name (okay : NAME | okay ∈ undashed) ranging over the
booleans. We restrict the type BINDING by determining that okay and okay ′

are only associated with boolean values.

∀ b : BINDING | {okay, dash okay} ⊆ dom b •
{b okay, b(dash okay)} ⊆ BOOL VAL

We could have introduced this restriction when we first defined BINDING, but
as we intend to have modular independent theories, we postponed the restriction
on observational variables used by specific theories.

Designs are defined in the theory utp-des. The set ALPHABET DES is the
set of all alphabets that contain okay and okay ′. First we define DES PRED , the
set of relations u, such that u.1 ∈ ALPHABET DES . Designs with precondition
p and postcondition q are written p � q and defined as okay ∧ p ⇒ okay ′ ∧ q.
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The expression okay is the equality okay =a true, which is mechanised in our
work as =R (a, okay,Val(Bool(true))). For a given alphabet a, name n, and
expression e, such that n ∈ a and the free-variables of e are in a, the function
=R (a,n, e) returns a relational predicate (a, bs), in which for every binding b
in bs , b n = Eval(b, e). A design is defined as follows.

�D : WF DES PRED PAIR → REL PRED

∀ d : WF DES PRED PAIR •
d .1 �D d .2 = (=R (d .1.1, okay,Val(Bool(true))) ∧R d .1)⇒R

(=R (d .1.1, dash okay,Val(Bool(true))) ∧R d .2)

The members of WF DES PRED PAIR are pairs of relations (r1, r2) from
DES PRED with the same alphabet. The turnstile is used by both ProofPower-
Z and the UTP. The former uses it to give names to theorems, and the later uses
it to define designs. In our work, we have kept both of them, but we underscore
the UTP design turnstile with a D .

The most important result for designs, which is the motivation for its defini-
tion, has also been proved in our mechanisation: the left-zero law for TrueR.

In this new setting, new definitions for ΠR and assignment are needed. The
skip for designs ΠD is defined in terms of the relational skip ΠR as follows.

ΠD : WF SkipD → REL PRED

∀ a : WF SkipD • ΠD a = TrueR a �D (ΠR a)

The type WF SkipD is formed by all the homogeneous alphabets that contain
okay and okay ′. The new definition of assignment uses the relation assignment
in a very similar way and is omitted here.

Designs are also characterised by two healthiness conditions. The first, H 1,
guarantees that observations cannot be made before the program starts. We define
H 1(d) = okay ⇒ d as H 1(d) = (=R ({okay}, okay,Val(Bool(true)))) ⇒R d .
The set of relations that satisfy a healthiness condition h is the set of relations r
such that h(r) = r . For instance, H 1 healthy = {d : REL PRED | H 1(d) = d}.

An H 2 healthy relation does not require non-termination. In previous re-
search [3], we presented a way of expressing H 2 in terms of an idempotent
function: H 2(P) = P ; J , where J =̂ (okay ∧ okay ′ ⇒ v ′ = v). We express
v ′ = v as the relational skip ΠR on the alphabet containing the names in the
lists v and v ′. We define J as a function that takes an alphabet a′ containing
only dashed variables, and yields the relation presented below, where A = a∪a′,
and a is obtained by undashing all the names in a′.

(okay =A true ⇒R okay ′ =A true) ∧R ΠR(A \ {okay, okay ′})
Our definition of the function H 2 is presented below.

H 2 : REL PRED �→ REL PRED

∀ d : REL PRED | dash okay ∈ d .1 • H 2 d = (d ;R(J (out a d .1)))
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The function H 2 is partial because J defines a relation that includes okay and
okay ′ in its alphabet, and hence, the alphabet of a relation d that can be made
H 2 healthy must contain okay ′ in order to be composable with J (out a d .1). In
order to reuse our previous results [3], we use this definition for H 2.

More than thirty laws from previous work [9, 3], involving design and their
healthiness conditions, have been included in our theory of designs. Their proofs
do not expand any definition in the relations theory. Many laws were included
in the relations theory, in order to carry out proofs in the designs theory.

4.4 WTR and Reactive Processes

The behaviour of reactive processes cannot be expressed only in terms of their
final states; interactions with the environment (events) need to be considered.
Besides okay, in the theory of reactive processes we have the observational vari-
ables tr ,wait , and ref . The variable wait records whether the process has ter-
minated or is interacting with the environment in an intermediate state. Since
it is a boolean, the definition of wait is similar to that of okay. The variable
tr records the sequence of events in which the process has engaged; it has type
SEQ EVENT VAL. The variable ref is a set of events in which the process may
refuse to engage; its type is SET EVENT VAL. The definitions of these vari-
ables are in the theory utp-wtr. In the theory utp-rea, we define REA PRED , the
set of relations whose alphabet is a member of ALPHABET REA. This is the
set of alphabets that contain okay, tr , wait , ref , and their dashed counterparts.

As for designs, healthiness conditions characterise the reactive processes. The
first healthiness condition R1 states that the history of interactions of a process
cannot be changed, therefore, the value of tr can only get longer. Our definition
uses a function ≤R (sequence prefixing), which, is the Z prefixing relation lifted
to VALues.

≤R : VAL↔ VAL

( ≤R ) = {s1, s2 : SEQ VAL | ((Seq∼) s1) prefixZ ((Seq∼) s2)}

The type SEQ VAL is defined as the {s : seqVAL | Seq(s)} and the Z sequence
prefixing prefixZ is defined in utp-z-library. Furthermore, in Z, ∼ stands for the
relational inverse operator.

The definition of R1 below mechanises the function R1(P) = P ∧ tr ≤ tr ′.

R1 : REL PRED → REL PRED

∀ r : REL PRED •
R1 r = r ∧R (=+R ({tr , dash tr},

Rel(( ≤R ),Var(tr),Var(dash tr)),
Val(Bool(true))))

In order to transform the expression tr ≤ tr ′ into a relational predicate, we
assert that the expression Rel(( ≤R ),Var(tr),Var(dash tr)) is equals to
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Val(Bool(true)). We adopt the same strategy to lift all needed Z relational oper-
ators (∈,/∈,⊆, . . .) and functions (using Fun1 and Fun2) to relational predicates.

The second healthiness condition establishes that a reactive process should
not rely on events that happened before it started. We mechanise the formu-
lation R2(P(tr , tr ′)) = P(〈〉, tr ′ − tr) [3]; this requires that P is not changed
if tr is taken to be the empty sequence, and tr ′ is taken to be tr ′ − tr , the se-
quence obtained from tr ′ by removing its prefix tr . The notation P(〈〉, tr ′− tr) is
implemented using substitution; R2 is defined as R2(P) = P [〈〉/tr ][tr ′− tr/tr ′].

The final healthiness condition R3 defines the behaviour of a process that is
still waiting for another process to finish: it should not start. In UTP [9], R3 is
defined as R3(P) = ΠREA �wait �P , and is mechanised in our work as follows.

R3 : REA PRED �→ REA PRED

∀ r : REA PRED | r .1 ∈WF SkipREA •
R3 r = (ΠREA r .1) �R (=R ({wait},wait ,Val(Bool(true)))) �R r

This definition of R3 uses a conditional and the reactive skip ΠREA. Conditionals
are defined only if both branches have the same alphabet and ΠREA is only
defined for homogeneous reactive alphabets (WF SkipREA). For this reason, our
definition reveals that R3 is not a total function: it can only be applied to
homogeneous reactive relations.

A reactive process is a relation with a reactive alphabet a, which is R healthy;
the function R is defined as R(r) = R1(R2(R3(r))). Based on these definitions,
more than sixty laws, including those we presented previously [3], are part of
our theory of reactive processes. Among other properties, they prove that the
healthiness conditions for reactive processes are idempotent and commutative,
and the closure of some of the program operators with relation to the healthi-
ness conditions. They also explore relations between healthiness conditions for
reactive processes and designs.

4.5 CSP Processes

Our mechanisation of the CSP theory is based on our earlier research [3]. Ba-
sically, CSP processes are reactive processes that satisfy two other healthiness
conditions; they can all be expressed as reactive designs: the result of applying
R to a design. The first healthiness condition states that the only guarantee in
the case of divergence (¬ okay) is that the trace can only be extended. It is
mechanised as CSP1 r =̂ r ∨ (¬ okay ∧ tr ≤ tr ′).

The second healthiness condition is a recast of H 2, presented in Section 4.3,
with an extended reactive alphabet. The mechanisation of CSP2 in ProofPower-
Z reveals, as it does for H 2, that this function is not total: it is only applicable to
relational predicates which contain okay ′, tr ′, wait ′, and ref ′ in their alphabet.

CSP2 : REL PRED �→ REL PRED

∀ r : REL PRED | {dash okay, dash tr , dash wait , dash ref } ⊆ r .1
• CSP2 r = r ;RJ (out a r .1)
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A CSP PROCESS is a CSP1 healthy and CSP2 healthy reactive process.
The SKIP process terminates immediately. The initial value of ref is irrele-

vant, and it is quantified in the definition of SKIP .

SKIP : CSP PROCESS

SKIP = R(∃R ({ref }, ΠREA ALPHABET CSP))

The ALPHABET CSP contains only okay, tr , wait , ref , and their dashed coun-
terparts. The existential quantification does not remove ref from the alphabet,
as opposed to that used in the definition, for instance, of variable blocks.

Besides the definition for simple prefixing (e →CSP SKIP , where e is an
event) originally given by the UTP, we mechanise a simpler definition which was
proven equivalent: e →CSP SKIP = R(true � doC e). The following function is
a simplified version of doA presented in the UTP.

doC e =̂ tr ′ = tr ∧ e /∈ ref ′ � wait ′ � tr ′ = tr � 〈e〉
The simplification was possible because we express prefixing as a reactive design.
An event has either not happened, and the trace has not changed and the process
is willing to engage in e, or it has happened and the trace has been extended.

By expressing all operators as reactive designs, we bring uniformity to proofs,
and foster reuse of existing results. All of our CSP theorems [3] and Hoare and
He’s UTP theorems [9] are part of our utp-csp theory. It is currently being used
as a basis of a Circus theory.

5 Conclusions

In this paper we give a set-based model to relations, and use it as a basis for the
development of four theories: relations, designs, reactive processes, and CSP. For
us, a relation is a pair, whose first element is a set that represents its alphabet
and whose second element is a set of functions from names to values.

This is not the only possible model for relations. Our choice was based on the
fact that any restriction that applies to the relations has a direct impact on the
complexity of the proofs. Our model imposes a simple restriction: the domain of
the bindings must be equal to the alphabet. This restriction results in simpler
definitions, and hence proofs. For instance, in [4], we defined a relation as a
pair formed by an alphabet and a set of pairs of bindings: for every pair (b1, b2)
of bindings in a relation, the domain of b1 has only undashed names and that of
b2 only dashed names. Such a restriction has to be enforced by the definition of
every operator. There is, however, an isomorphism between our model and this
one. By joining and splitting the sets of bindings, we can move from one model to
another; our concern is only with the practicality of mechanical theorem proving.

We also could have used bindings whose domains could be different from the
relation alphabet. However, the alphabet is the set of names about which the
relation describes something. Hence, the alphabet a of a relation would have to
be either a subset or equal to the domain of each binding b. Values of names that
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were not in the alphabet would actually have no meaning. We chose bindings
whose domain is the alphabet because, by taking the other approach, we have
a more complex definition for alphabet extension: bindings for names that are
not in the alphabet need to be removed before being left unrestricted. Alphabet
extension is at the heart of the definitions of conjunction and disjunction.

If, in the hope to find simplifications in other points, we accepted the more
complex definition of alphabet extension, then we would need to determine how
to handle the names that are not in the alphabet of the relation. For example,
bindings could be total functions which map these names to an undefined value
⊥; or we could leave these names unrestricted. These restrictions on relations
are in fact more complex than that in our model, and lead to more complex
definitions and proofs. We also have an isomorphism between our model and
each of these; by applying a domain restriction to the bindings in these models
and extending our model’s bindings, we can change the representations.

As an industrial theorem prover, ProofPower-Z proved to be powerful (and
helpful). The support provided by hundreds of built-in tactics and theories, as
libraries for Z constructs and set theory, made our work much simpler. The
axiomatisation of the theorems proved in our work in other theorem provers, like
Z/Eves [17], and the development of new theories based on these axioms makes
the use of our results in different theorem provers possible. In ProofPower-Z, the
tactics that can be created are more powerful than in Z/Eves; however, the level
of expertise needed for initial users of Z/Eves is not as high as for ProofPower-Z.

The discussion above of alternative models is based on our experience with
ProofPower-Z; some of them could make proofs easier in another theorem prover.
An investigation of alternative theorem provers is a topic for future research.

Nuka and Woodcock [11] formalised the alphabetised relational calculus in
Z/EVES. We extend that work by including many other operations, such as se-
quencing, assignment, refinement, and recursion. The hierarchical mechanisation
of the theories of designs, reactive processes, and CSP is also a contribution of
our work that provides a powerful tool for further investigations on them.

Hoare and He [9], although dealing with alphabetised predicates, often leave it
quite implicit. For example, true is often seen unalphabetised, while in fact, it is
alphabetised. This abstraction simplifies things, but is not suitable for theorem
provers. With the obligation to deal with alphabets, our work gives more details
on how the alphabets are handled within the UTP.

The alphabet extension used in the UTP constrains the values of the new
variables: they cannot be changed. However, our set-based model for relations
needed a different alphabet extension that leaves their values unconstrained.
Furthermore, in the UTP, existential quantifications are used in two different
ways: in the definition of variable blocks, the authors explicitly state that the
quantified variables are removed from the alphabet; and in the definition of the
reactive SKIP , the alphabet is, implicitly, left unchanged. Our implementation
defines two existential and two universal quantifications: one of them removes
the quantified variables from the alphabet, and the other one does not. We also
redefined some of the UTP definitions in order to facilitate our proofs.
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Our work also reveals details that are left implicit in the UTP regarding the
domain of the healthiness conditions. By mechanising the healthiness conditions,
R3 for instance, we make it explicit that R3, and consequently R, is a partial
function that can only be applied to homogeneous reactive processes.

We expressed the language constructors as functions. For this reason, they
can be simply extended without loosing the previous proofs; the syntax of ex-
pressions was abstracted by using three simple definitions. Furthermore, the
strategy that we adopted for lifting Z functions and relations to relational pred-
icates, for instance ≤R, makes the Z toolkit directly available in our theory. Our
work provides a mechanical support not only to Circus, but to any other work
theoretically based on any of the UTP theories.

The current number of laws on sequential composition may need to be in-
creased to allow users of our theory of relation not to expand its definition in
the proof of theorems. The proof of more laws on sequential composition that
will make this possible is an important piece of future work.

We aim at providing a mechanisation of the UTP that can support the de-
velopment of other languages theoretically based on the UTP; Circus is such a
language. Our next step is to mechanise the Circus theory, which will be based
on the CSP theory, and will mechanise not only the final version of the seman-
tics of Circus, but also all the refinement laws proposed so far. This will provide
Circus with a mechanised refinement calculus that can be used in the formal
development of State-Rich Reactive Programs.
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Termination of Real-Time Programs:
Definitely, Definitely Not, or Maybe
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Abstract. Real-time control programs are often used in contexts where (concep-
tually) they run forever. Repetitions within such programs (or their specifications)
may either (i) be guaranteed to terminate, (ii) be guaranteed to never terminate
(loop forever), or (iii) may possibly terminate. In dealing with real-time programs
and their specifications, we need to be able to represent these possibilities, and
define suitable refinement orderings.

A refinement ordering based on Dijkstra’s weakest precondition only copes
with the first alternative. Weakest liberal preconditions allow one to constrain be-
haviour provided the program terminates, which copes with the third alternative
to some extent. However, neither of these handles the case when a program does
not terminate. To handle this case a refinement ordering based on relational se-
mantics can be used. In this paper we explore these issues and the definition of
loops for real-time programs as well as corresponding refinement laws.

1 Introduction

Consider the program in Fig. 1, that detects when an input sensor goes above a critical
level and sets an output alarm. It makes use of auxiliary timing variables, curr and prev,
to ensure that successive samples of the sensor are at most limit time units apart. If the
sensor is continuously above the critical level for at least limit time units, the loop is
guaranteed to terminate and set the alarm within limit time units from the time at which
the previous sample (which was less than the critical level) was taken. If the sensor is
transiently above the critical level for less than limit time units, the loop may or may not
detect this and may or may not terminate, but if it does terminate it does so within limit
time units of the time at which the previous sample was taken. If the sensor is never
above the critical level, the loop is guaranteed to execute forever, conceptually at least,
because no implementation can achieve this in practice.

Within the program the deadlines are (rather special) commands, that guarantee to
terminate by the given deadline when execution of the program reaches the deadline
command [4, 8]. If execution of a program does not reach a deadline command, the
deadline has no effect (just like any other command that is not reached). In the example
in Fig. 1, the final deadline has no effect if the loop never terminates.

There are two significant points from this discussion that need to be handled by the
semantics we give to real-time programs:

– deadlines are treated as commands within a program (rather than some external
constraint imposed on a program), and
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curr := τ ;
alarm := off ;
repeat

curr, prev := τ, curr;
level : read(sensor);
deadline prev + limit

until level ≥ critical;
alarm := on;
deadline prev + limit

Fig. 1. Program to set alarm when sensor goes above critical

– loops may be required to terminate in some circumstances, required not to terminate
in others, and allowed to either terminate or not terminate in yet others.

In Sect. 2 we discuss a number of issues about modelling real-time programs as
relations, including healthiness conditions on the relations. Sect. 3 formalises a model of
real-time programs and Sect. 4 gives the semantics of basic commands. These sections
expand on the issues discussed in an earlier paper on a predicative semantics for real-
time refinement [7], which is itself a generalisation of an earlier real-time refinement
calculus, that did not handle nonterminating programs [9]. In Sect. 5 we discuss the
semantics of loops in a real-time context, in particular, the case of a nonterminating
loop that iterates an infinite number of times, and in Sect. 6 we discuss refinement laws
for such loops. These last two sections give an overview of earlier work on reasoning
about real-time repetitions [6].

2 Modelling Real-Time Programs

Time. To model real-time programs, we need to model time. One simple way to do this
is to add a special time variable, τ , representing the “current” time [11]. All commands
need to ensure that time does not go backwards, which we represent by

τ0 ≤ τ (1)

where τ0 represents the start time of a command and τ its finish time. In general, we
model commands as relations between their before state and their after state, which are
represented respectively by zero-subscripted variables and unsubscripted variables. For
real-time control programs, we need to allow for commands that execute forever, which
we do by allowing τ to take on the value infinity (∞). Real-time control applications
may involve variables that vary continuously over time, and hence we model time by
real numbers plus infinity (but for other applications discrete time could be used). Some
behaviours we might want to specify are:

– termination is required if condition RT holds, i.e., RT ⇒ τ <∞,
– nontermination is required if NRT holds, i.e., NRT ⇒ τ =∞,
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– termination is allowed only if AT holds, i.e., τ <∞⇒ AT, and
– nontermination is allowed only if ANT holds, i.e., τ =∞⇒ ANT.

For example, to specify the task for which the repeat loop in Fig. 1 provides an imple-
mentation, we require that following hold.

– If the sensor never strays above critical, the loop must not terminate:

(sensor < critical) over [τ0 ...∞)⇒ τ =∞,

where (sensor < critical) over [τ0 ...∞) means

(∀ i : Time • τ0 ≤ i <∞⇒ sensor(i) < critical).

– The loop is allowed to terminate only if the sensor strays above critical, but should
do so within limit time units:

τ <∞⇒ (∃ t : Time • τ0 ≤ t ∧ sensor(t) ≥ critical ∧ τ ≤ t + limit).

– The loop must terminate by the end of the earliest time interval over which the
sensor remains critical for limit time units, if such an interval exists:

let crit times =̂ {t : Time | τ0 ≤ t ∧ (sensor≥ critical) over [t ... t + limit]} •
crit times �= {} ⇒ τ ≤ inf (crit times) + limit

where inf (crit times) gives the infimum (greatest lower bound) of the set crit times.
If the set is empty then its infimum is ∞. In addition, arithmetic involving infinity
gives ∞ + limit = ∞, and hence the constraint becomes τ ≤ ∞, which is no
constraint at all. This allows one to drop “crit times �= {} ⇒” from the above
formula without changing its meaning.

Two common forms of program correctness are total and partial correctness. These can
be encoded in postconditions by making use of the time variable. For total correctness
the program is guaranteed to terminate and establish some condition Q; we can use
a postcondition of the form: τ < ∞ ∧ Q. For partial correctness, if the program
terminates, then condition Q is guaranteed to hold (but the program isn’t guaranteed to
terminate); we can use a postcondition of the form: τ <∞⇒ Q.

Inputs and outputs. Real-time programs are reactive: their behaviour over time is signif-
icant, not just the final value of their variables when they terminate. This is particularly
the case for programs that execute forever, because they have no final state for their
local variables. To model the reactive behaviour of real-time programs, external inputs
and outputs can be modelled as traces over time, i.e., functions from time to their value
at that time. We consider inputs to be traces over all time. This allows one to write as-
sumptions about the future values of inputs, e.g., assume upper/lower bounds on their
values or their rates of change. For example, the sensor in the example in Fig. 1 may
have its rate of change limited:

∀ t : Time • (deriv(sensor))(t) ≤ max rate
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where deriv(sensor) gives the derivative of the function sensor with respect to is argu-
ment, time. At time τ an output, o, is modelled by a trace whose domain is the set of
times up until τ , i.e.,

dom(o) = {t : Time | t ≤ τ}. (2)

If a command does not terminate, the domain of its outputs is given by the set Time
(which does not include ∞). Commands cannot change past values of outputs. If o0
represents the initial value of an output trace (with domain up to τ0) at the start of the
execution of a command, and o represents its final value, then o0 must be a prefix of o:

o0 ⊆ o (3)

Because for all times, t, in the domain of o0 we have o0(t) = o(t), in specifications and
refinement laws we do not need to refer explicitly to o0, because we can always refer to
o instead; the underlying semantics ensures o0 is a prefix of o.

Local variables. In addition to input and output variables, which are externally ob-
servable, we would like to model local variables, whose values are not externally ob-
servable. For commands we model local variables via their before and after values. A
special case applies when the command does not terminate. In this case there is no final
state for the locals. Hence if R is a relation representing a command with locals v, then
if R does not terminate, it should not constrain the final values of v:

τ =∞⇒ (R ⇔ (∀ v • R)) (4)

Sequential composition. As in other theories that model commands as relations, se-
quential composition of commands is modelled by relational composition. However,
care needs to be taken if the first command, C1, in a sequential composition, “C1; C2”
does not terminate. In this case the behaviour of the sequential composition should be
the same as the behaviour of C1.

For a sequential composition, “C1; C2”, the final state of the locals for C1 corre-
sponds to the initial state of the locals for C2. This intermediate state is hidden in the
sequential composition so that only the initial and final values of the whole sequential
composition are available for further composition. This is quite different to the case
for outputs where the whole trace of an output is observable, including its intermediate
values between the start and finish times of the command. The final value of the output
trace extends its initial value.

For a sequential composition “C1; C2”, the initial time for C2 will be the same as the
final time for C1, but if C1 does not terminate, this time will be infinity. In this case, for
C2 we have that τ0 =∞, but, for any command, we have τ0 ≤ τ and hence τ =∞ for
C2. If C1 does not terminate, then for any output o, for C2, dom(o0) = Time. However,
we also have τ = ∞ and hence dom(o) = Time, and hence o0 = o because o0 and o
have the same domain and by (3), o0 ⊆ o. Note that when τ0 = ∞, by (1) we have
τ =∞, and hence by (4) the final values of the local variables are not constrained.

Abort versus nontermination. In a control application, the desired behaviour of a con-
trol program may be to monitor an input and control an output in response, forever.



Termination of Real-Time Programs 145

We would like to distinguish such behaviour from a program that aborts, because, say,
of a division-by-zero (or in general because its precondition is not satisfied). For this
reason we can’t use a semantics that identifies abort and nontermination, such as Dijk-
stra’s weakest preconditions [2]. Dunne [3] has investigated the notion of generalised
correctness, which allows one to specify not only that a program should terminate, but
also that a program should never terminate. While general correctness generalises Di-
jkstra’s approach, it does not allow one to distinguish nontermination from abortion, as
we require here.

One way to distinguish aborting behaviour is to add a boolean variable, ok, to rep-
resent a normal nonaborted state iff it is true. The variable name ok is borrowed from
Hoare and He [12] where it represents normal termination. However, in their semantics
nontermination and abort are equated, which is not the case here. We have that

– ok ∧ τ <∞ represents a normal, terminated state,
– ok ∧ τ =∞ represents a normal, nonterminated state, and
– ¬ ok represents an abnormal (i.e., aborted) state.

A command has both a before and after value for ok, represented by ok0 and ok, re-
spectively. If ok0 holds then the program has not yet aborted when the command is
commenced, and if ok holds, the command did not abort.

For a sequential composition “C1; C2”, if C1 neither aborts nor terminates then, for
C2, ok0 is true and τ0 = ∞. In this case, the whole sequential composition should not
abort, and hence ok should also hold for C2. That is, for C2

ok0 ∧ τ0 =∞⇒ ok. (5)

Once a program aborts, no guarantees can be given about its behaviour from that
point of time onwards, other than that time increases (1) and the previous values of
the outputs can’t be changed (3). Hence for a sequential composition, “C1; C2”, if C1
aborts then, for C2, ok0 is false, and if R2 is the relation representing C2, we have

¬ ok0 ⇒ (R2 ⇔ τ0 ≤ τ ∧ o10 ⊆ o1 ∧ . . . ∧ om0 ⊆ om), (6)

where o1, . . . , om are the outputs of the program. Note that no constraints are placed on
ok, the final values of the local variables, or the values of the outputs beyond time τ0.
Similarly, if C1 does not terminate, then, for C2, τ0 =∞, and R2 should have no effect
other than to ensure τ =∞, the outputs are unchanged, and nonabortion is maintained:

τ0 =∞⇒ (R2 ⇔ τ =∞ ∧ o10 = o1 ∧ . . . ∧ om0 = om ∧ (ok0 ⇒ ok)). (7)

3 Formalisation of the Model

Fig. 2 formalises the semantic domains used in our model of real-time programs. Time
is modelled by the nonnegative real numbers, with the time variable also allowed to
take on the value infinity. We interpret a program in the context of an environment,
ρ, which gives the names of the program inputs, ρ.input, outputs, ρ.output, and local
variables, ρ.local. The values of local variables are modeled by a function that for each
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Let ρ and ρ′ be environments, such that ρ.input = ρ′.input and ρ.output = ρ′.output. For a
schema value σ with component loc, the notation σ [loc\v] stands for the schema value σ but
with the value of the component loc replaced by v.

Time = R+

Time∞ = Time ∪ {∞}
Localρ = ρ.local → VAL

Inρ = ρ.input → (Time → VAL)

Outρ = ρ.output → (Time �→ VAL)

Σρ = [ok : Boolean; τ : Time∞; loc : Localρ; out : Outρ |
∀ o : dom(out) • dom(out(o)) = {t : Time | t ≤ τ}]

Predρ = Inρ × Σρ → Boolean

Relρ,ρ′ = Inρ × Σρ × Σρ′ → Boolean

Healthyρ,ρ′ = (λ σ0 : Σρ; σ : Σρ′ • σ0.τ ≤ σ.τ ∧ (σ0.ok ∧ σ0.τ = ∞ ⇒ σ.ok) ∧
(∀ o : ρ.output • σ0.out(o) ⊆ σ.out(o)))

Commandρ,ρ′ = {R : Relρ,ρ′ | ∀ in : Inρ; σ0 : Σρ; σ : Σρ′ •
R(in, σ0, σ) ⇔ Healthyρ,ρ′(σ0, σ) ∧

(σ0.ok ∧ σ0.τ < ∞ ⇒ R(in, σ0, σ)) ∧
(σ.τ = ∞ ⇒ (R(in, σ0, σ) ⇔ (∀ v : Localρ • R(in, σ0, σ [loc\v]))))}

Fig. 2. Semantic domains

local variable name gives its value. Inputs and outputs are modelled similarly, but their
values are traces over time. The set of possible program states, Σρ, is modelled by a Z
schema1 containing the boolean component, ok, the “current” time, τ , the values of the
local variables, and the values of the traces of the output variables up until τ (see (2)).

Single-state predicates, Predρ, are boolean functions on the inputs and program
state, whereas relational predicates (or relations for short) are boolean functions on
the inputs plus a before state and an after state. To allow for program primitives that
allocate/deallocate local variables, we allow the before and after environments to be
different. Hence we use of Σρ for the before state, and Σρ′ for the after state. The no-
tation we used in Sect. 2 is an abbreviation for that used in the semantics, for example,
ok0 stands for σ0.ok, ok stands for σ.ok, and o stands for σ.out(o).

Commands are relations that satisfy the conditions outlined in Sect. 2. The predicate
Healthy puts together three constraints that all commands must satisfy:

– time does not go backwards (1),
– if the initial state has time infinity and isn’t aborted (i.e., the program before the

command did not terminate or abort) then the command preserves the nonaborted
state (5), and

– the past value of outputs is preserved (3).

1 A Z schema is like a record, but with the ability to specify a constraint on its components.
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A relation, R, representing a command must satisfy

R(in, σ0, σ)⇔ (Healthyρ,ρ′(σ0, σ) ∧ (σ0.ok ∧ σ0.τ <∞⇒ R(in, σ0, σ))).

This ensures R(in, σ0, σ) implies Healthyρ,ρ′(σ0, σ). In addition, if either σ0.τ =∞ or
¬ σ0.ok, it ensures R(in, σ0, σ) ⇔ Healthyρ,ρ′(σ0, σ), as required by (6) and (7). That
is, if the initial state is an abort state or has time infinity, then the relation puts no further
constraint on the program variables, other than the healthiness constraints listed above.

If the command does not terminate there is no final state for the local variables and
hence the command relation is independent of the values of the final state of the local
variables (4).

4 Semantics of Commands

The semantics of a command, C, is given by a functionMρ (C) that for an environment
ρ gives the relation representing C. A command, C1, is refined by another command,
C2, written C1 ! C2, if the relation corresponding to C1 contains that of C2, that is,

C1 !ρ C2 =̂ ∀ in : Inρ, σ0 : Σρ, σ : Σρ′ •
Mρ (C2) (in, σ0, σ)⇒Mρ (C1) (in, σ0, σ)

In general the final environment of a command, ρ′, may differ from the initial environ-
ment, ρ. This allows one to treat variable allocation (which extends the environment)

Let ρ, ρ′, and ρ′′ be environments; P ∈ Predρ, such that P is independent of ok; Q ∈ Relρ,ρ,
such that Q is independent of ok0 and ok and the final values of the local variables in the case of
nontermination; a vector, �x, of local variables and outputs within ρ; C1, C2, Ci ∈ Commandρ,ρ′

for i ∈ S; C′ ∈ Commandρ,ρ′ ; C′′ ∈ Commandρ′,ρ′′ ; �no be the vector of outputs in ρ.output that
are not in the frame�x; and �nx be the vector of local variables in ρ.local that are not in�x.

Command C Mρ (C)

P λ in ∈ Inρ, σ0, σ ∈ Σρ • Healthyρ,ρ(σ0, σ) ∧
(σ0.ok ∧ σ0.τ < ∞ ∧ P(in, σ0) ⇒

σ.ok ∧ σ0.τ = σ.τ ∧ (∀ v : ρ.local • σ0.loc(v) = σ.loc(v)))

∞�x: Q λ in ∈ Inρ, σ0, σ ∈ Σρ • Healthyρ,ρ(σ0, σ) ∧
(σ0.ok ∧ σ0.τ < ∞ ⇒

σ.ok ∧ Q(in, σ0, σ) ∧ stable( �no, [σ0.τ ... σ.τ ]) ∧
(σ.τ < ∞ ⇒ (∀ v : �nx • σ0.loc(v) = σ.loc(v))))

C′; C′′ Mρ C′ o
9 Mρ′ C′′

C1 � C2 Mρ (C1) ∪ Mρ (C2)

i:S
Ci

i:S

Mρ (Ci)

Fig. 3. Semantics of basic commands
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and deallocation (which contracts the environment). Assumption and specification com-
mands have the same before and after environments. In Fig. 3 we define the following
commands.

– An assumption,
{

P
}

, that for a single-state predicate, P, has no effect (is a null
operation) if P holds, but aborts if P does not hold. P must be independent of ok.

– A specification command,∞�x:
[
Q
]
, that for a vector of outputs and local variables,

�x, and a relation, Q, guarantees to establish the relation Q and modify only the
variables in its frame�x. The outputs not in the frame ( �no) are stable for the duration
of the command, and, provided the command terminates, the final values of the
local variables not in the frame ( �nx) are the same as their initial values. Q must be
independent of ok0 and ok, and in the case of nontermination, independent of the
final values of the local variables.

– Sequential composition of commands. For relations R1 : Relρ,ρ′ and R2 : Relρ′,ρ′′ ,
their relational composition is defined by

R1
o
9 R2 =̂ (λ in : Inρ; σ0 : Σρ; σ : Σρ′′ •

(∃σ′ : Σρ′ • R1(in, σ0, σ
′) ∧ R2(in, σ′, σ)))

(8)

– Demonic nondeterministic choice between commands, both binary and over a set
of commands. Union of relations is given by pointwise disjunction of relations.

In the following definitions, Q is a relation; d is a time-valued expression; i is a natural number;
and C is a command, that has the same before and after environments. An empty frame on a
specification command is represented by ∅.

skip = ∞∅: τ0 = τ

idle = ∞∅: τ < ∞
boneidle = ∞∅: τ = ∞

abort = false

magic = ∞∅: false

�x: Q = ∞�x: Q ∧ τ < ∞
Q = ∅: Q ∧ τ0 = τ

deadline d = τ ≤ d

C0 = skip

Ci+1 = C; Ci

C∗ =
i:N

Ci

Fig. 4. Additional commands

Given these basics, Fig. 4 gives the definition of some additional useful commands:

skip – a command that does nothing and takes no time; skip is the unit of sequential
composition: skip; C = C = C; skip.

idle – a command that does nothing, but may take time but must terminate.
boneidle – a command that never does anything and never terminates.
abort – a command that guarantees nothing. It is the zero of nondeterministic choice

and a left zero of sequential composition:

abort � C = abort = C � abort
abort; C = abort
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It is not a right zero of sequential composition because the command preceding it
may not terminate, e.g., boneidle; abort = boneidle . In addition, it is not a right
zero because the behaviour up until the time of abort is preserved.

magic – an infeasible command that refines anything (and hence can not be imple-
mented). magic is the unit of nondeterministic choice and a left zero of sequential
composition:

magic � C = C = C �magic
magic; C = magic

It is not a right zero of sequential composition because the command preceding it
may not terminate or may abort, e.g.,

abort; magic = abort
boneidle; magic = boneidle

�x:
[
Q
]

– a terminating specification command.[
Q
]

– a test (or coercion) that acts like skip if Q is true and magic if Q is false.
deadline d – a test that guarantees to meet the deadline d.
iteration of commands – both to a particular natural number, Ci, and any finite num-

ber of iterations, C∗, including zero [1, 14, 10].

To be well defined, commands used in iterations must have the same before and after
environments. The iterated commands are used to define the semantics for loops, but in
order to do that we also need to define the iteration of a relation an infinite number of
times. To define infinite iteration we use an infinite sequence of intermediate states. For
a relation, R ∈ Relρ,ρ,

R∞ =̂ (λ in : Inρ; σ0, σ : Σρ •
(∃ tr : N→ Σρ • tr(0) = σ0 ∧

(∀ i : N • R(in, tr(i), tr(i + 1)) ∧ tr(i).τ <∞ ∧
(∀ o : ρ.output • tr(i).out(o) ⊆ σ.out(o))) ∧

((∀ i : N • tr(i).ok)⇒ σ.ok) ∧
σ.τ = sup({i : N • tr(i).τ})))

(9)

Successive states in the sequence are related by R. As we are considering an infinite
repetition, we only consider terminating behaviour of R on every iteration. The final
value of an output contains the output of every iteration as a prefix — it is the limit
of the values of the outputs. If all iterations don’t abort, the infinite repetition does
not abort. The termination time of the infinite repetition is the supremum (least upper
bound) of the termination times of all iterations. If there is some strictly positive time,
d, such that every iteration takes at least d time units — as is the case in practice — then
the supremum will be infinity. If the relation R is well founded and terminates then R∞

is the empty relation. Note that, while R∞ constrains the final values of the outputs as
well as ok and τ , it does not put any constraints on the final values of the local variables.

In an environment ρ, the semantics of infinite iteration of a command, C, is given by
the infinite iteration of the relation representing C:

Mρ (C∞) =̂ (λ in : Inρ; σ0, σ : Σρ • Healthyρ,ρ(σ0, σ) ∧
(σ0.ok ∧ σ0.τ <∞⇒ ((Mρ (C))∞)(in, σ0, σ))).
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5 Modelling a Loop

To model a loop, do B → C od, we need to consider both the case when it executes
a finite number of iterations and the case when it executes an infinite number of itera-
tions. We start with a simple model that ignores timing aspects. We can model a single
iteration of the loop by a test (or coercion)

[
B
]

followed by the command C. Any finite
number of iterations can then be modelled by

(
[
B
]
; C)∗.

From the definition of Kleene star this is equivalent to

⊔i:N(
[
B
]
; C)i.

Recall that a test whose predicate is false is equivalent to magic, which is the unit
of nondeterministic choice. Hence if after i iterations the guard B becomes false, all
iterations higher than i will be equivalent to magic and will not contribute to the non-
deterministic choice.

The loop terminates if the guard is false. We can model this by

(
[
B
]
; C)∗;

[¬ B
]
.

If after i iterations the guard is still true, that element of the nondeterministic choice
will be equivalent to magic and not contribute to the choice. Note that if, on the ith
iteration, C does not terminate, the guard will not be reached and hence the behaviour
will be equivalent to (

[
B
]
; C)i.

The other case in which the loop does not terminate is if it iterates an infinite number
of times, which we can model as

(
[
B
]
; C)∞.

Hence a loop can be modelled as

((
[
B
]
; C)∗;

[¬ B
]
) � (

[
B
]
; C)∞.

To adapt this definition to the real-time context we need to handle the following issues:

1. the loop guard may contain a reference to an output, o, which needs to be interpreted
as the value of the output at the current time, o(τ);

2. evaluation of the loop guard and the branch back to the start of the loop may take
time; and

3. each iteration of the loop takes some minimum time.

The first of these we handle by introducing the notation B@τ to stand for the expression
B with every occurrence of each output, o, replaced by o(τ).

The second we model by introducing idle commands in the definition of a single
iteration. Instead of

[
B @ τ

]
; C, we use[

B @ τ
]
; idle; C; idle.
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We require that the loop guard, B, is idle stable, that is, its value does not change just
with the passage of time. If B is idle stable, then[

B @ τ
]
; idle = idle;

[
B @ τ

]
.

To ensure the third condition, i.e., that every iteration takes a minimum amount of
time, d, we introduce a fresh auxiliary local variable [5]. The auxiliary variable, s, cap-
tures the start time of the command, and a test at the end of an iteration ensures it takes
at least d time units. A single iteration becomes

ITER =̂ |[ aux s : Time; s := τ ;
[
B @ τ

]
; idle; C; idle;

[
s + d ≤ τ

]
]|.

Our real-time loop is then defined as a nondeterministic choice over all strictly positive
times d, of either a finite number of iterations of the loop followed by a false guard or
an infinite number of iterations.

do B→ C od =̂ ⊔d : Time | d > 0 • (ITER∗;
[¬ B @ τ

]
; idle) � ITER∞

Note that the requirement that every single iteration take at least d time units both
ensures that the termination time of an infinite number of iterations is infinity and also
avoids Zeno-like behaviour, where, for example, each iteration takes half the execution
time of the previous iteration. The nondeterministic choice over all strictly positive
times d allows the definition to be machine independent. We could arbitrarily use a time
for d of one yoctosecond (10−24 seconds) which should be more than small enough for
the foreseeable future, but the machine independent approach seems cleaner.

6 Refinement Laws for Loops

Jones presents a law for the refinement of a specification command to a loop that in-
volves both a loop invariant, I, which is a single-state predicate, and a well-founded
relation R [13]. Using the refinement calculus notation, in which “!” stands for “is
refined by”, the law can be phrased as follows.{

I
}
; x:
[
I ∧ ¬ B ∧ R∗] ! do B → {

I ∧ B
}
; x:
[
I ∧ R

]
od (10)

When executed in a state satisfying both the invariant and the guard, the body of the
loop terminates and re-establishes the invariant as well as establishing the relation R
between the before and after states of the loop body. Given this loop body, the above
rule states that, if the loop is executed in a state satisfying the invariant, it is guaranteed
to terminate in a state satisfying the invariant, the negation of the guard, and the reflexive
transitive closure of the relation (R∗). Termination of the loop is guaranteed by the fact
that the relation R is well founded; i.e., there is no infinite sequence of values such that
successive pairs elements in the sequence are related by R.

This law has been generalised to handle real-time, possibly-nonterminating loops
[6]. The generalisation also makes use of an invariant and a relation, but it does not
require the relation to be well founded in order to allow for nonterminating loops. We
consider a loop body that either,
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– terminates and maintains an invariant I and establishes the relation R between its
before and after states, or

– fails to terminate and establishes the relation Q.

The general repetition law allows for the following three behaviours of a loop.

Termination after a finite number of iterations. On termination the negation of the
guard, the invariant, and the reflexive transitive closure, R∗, of the relation hold, as
for Jones’s law (10).

Body nontermination: The loop fails to terminate because the loop body fails to ter-
minate on an iteration. The loop establishes the composition of R∗ and Q, i.e., R∗o

9Q.
The R∗ represents a finite number of iterations (zero or more) that terminate, and
the Q represents the final nonterminating iteration.

Infinite iteration: Even though the loop body terminates on every iteration, the loop
fails to terminate because the the loop guard is always true. We can make use of
the infinite iteration of a relation, R∞ (9). We also need to define the equivalent of
the invariant in this case. For a loop that iterates infinitely many times, if the loop’s
body terminates and maintains an invariant, I, then that invariant and the guard of
the loop, B, are true infinitely many times. Hence for any time τ ′, there exists a later
time at which the invariant, the guard, and R∗ hold.

I′ =̂ (B @ τ ∧ I ∧ R∗)
I′∞ =̂ (λ in : Inρ; σ0, σ : Σρ •

(∀ τ ′ : Time • (∃σ : Σρ • τ ′ ≤ σ.τ ∧ I′(in, σ0, σ))))

Infinite iteration of the loop establishes both I′∞ and R∞.

In the real-time case, if an invariant, I, holds before the start of a loop, it is not guar-
anteed to still hold after guard evaluation because the invariant may be time dependent
and the invariant could become false in the time it takes to evaluate the guard. Similarly,
if the invariant held at the end of one iteration, it isn’t guaranteed to still hold after the
guard evaluation for the next iteration. To avoid these problems, we require the loop
invariant to be idle-invariant, that is, it must satisfy,{

I
}
; idle ! idle;

{
I
}
.

For the same reasons the relation, Q, must be pre-idle-invariant, that is,

∞x:
[
Q
] ! idle; ∞x:

[
Q
]
,

and the relation, R, must be both pre- and post-idle-invariant, that is,

∞x:
[
R
] ! idle; ∞x:

[
R
]
; idle.

We can now give the most complex form of the rule for introducing a repetition.

Law 1 (Repetition). Given an idle-stable, boolean-valued expression, B; a pre-idle-
invariant relation, Q; an idle-invariant, single-state predicate, I; and a pre- and post-
idle-invariant relation, R; let I′ =̂ (B @ τ ∧ I ∧ R∗), then{

I
}
; ∞x:

[
(τ <∞ ∧ ¬ B @ τ ∧ I ∧ R∗) ∨

(τ =∞ ∧ ((I′∞ ∧ R∞) ∨ (R∗ o
9 Q)))

]
! do B → {

B @ τ ∧ I
}
; ∞x:

[
(τ <∞ ∧ I ∧ R) ∨ (τ =∞ ∧ Q)

]
od
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The above law can be specialised in a number of ways. If the loop body is guaranteed
to terminate, i.e., Q is false, that alternative for the loop and the loop body can be
eliminated.

Law 2 (terminating body).{
I
}
; ∞x:

[
(τ <∞ ∧ ¬ B @ τ ∧ I ∧ R∗) ∨ (τ =∞ ∧ (I′∞ ∧ R∞))

]
! do B → {

B @ τ ∧ I
}
; ∞x:

[
τ <∞ ∧ I ∧ R

]
od

If the loop body terminates, i.e., Q is false, and the relation R is well founded, i.e., R∞

is false, then only the terminating behaviour remains and the law is that of Jones [13].

Law 3 (terminating). Provided R is well founded,{
I
}
; ∞x:

[
τ <∞ ∧ ¬ B @ τ ∧ I ∧ R∗]

! do B → {
B @ τ ∧ I

}
; ∞x:

[
τ <∞ ∧ I ∧ R

]
od

If the guard is just true then the terminating case of the loop can’t occur.

Law 4 (true guard).{
I
}
; ∞x:

[
τ =∞ ∧ ((I′∞ ∧ R∞) ∨ (R∗ o

9 Q))
]

! do true → {
I
}
; ∞x:

[
(τ <∞ ∧ I ∧ R) ∨ (τ =∞ ∧ Q)

]
od

If in addition to the guard being true, if the body of the loop terminates, i.e., Q is false,
then the only behaviour allowed is infinite iteration.

Law 5 (infinite iteration).{
I
}
; ∞x:

[
τ =∞ ∧ I′∞ ∧ R∞]

! do true → {
I
}
; ∞x:

[
τ <∞ ∧ I ∧ R

]
od

7 Conclusions

Providing a semantics for real-time programs is a subtle process. We need to handle:

– specifying timing constraints on behaviours,
– specifying reactive behaviour where the intermediate values of outputs are signifi-

cant (not just their final values), and
– allowing nonterminating (eternal) programs as normal behaviour (rather than equat-

ing nontermination and aborting behaviour).

In this paper, we have summarised the issues involved in coming up with a suitable
semantics, and given a formalisation that handles these issues. The exposition on the
healthiness constraints for commands in Sect. 2 and the way they are formalised in
Sect. 3 is new in this paper.

To define loops that may not terminate we need to model not only finite numbers
of iterations of the loop, but also an infinite number of iterations. This can be done by
introducing an infinite iteration operator as well as using the conventional Kleene star
operator to handle a finite number of iterations.
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The refinement law for loops generalises that given by Jones [13], which makes use
of not only a loop invariant but a relation, R, between the before and after states of a
single iteration. The general law allows for not only the terminating case of Jones’s law,
but nontermination due to either infinite iteration or because the loop body does not
terminate.
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Abstract. This paper introduces techniques to organise predicate-
semantic models in a hierarchical structure so that a new model can
inherit the laws of the existing ones. Generic composition is used to sim-
plify the manipulation of predicates. Necessary restrictions are imposed
on the definition of each model so that the inheritance relation can be
established by checking a few conditions on the healthiness conditions
and the commands. Much of the checking can be supported by laws of
generic composition. The techniques also help simplify the proof of well-
definedness of program combinators (i.e. their closure in the semantic
space) so that we no longer need to prove it (in predicate calculus) for
every new model.

1 Introduction

One of the aims of Unifying Theories of Programming (UTP) [4] is to support
systematic semantic studies. The main techniques include healthiness conditions
and normal forms. A number of semantic models have been introduced for a va-
riety of computational models. The process of semantic modelling for each lan-
guage consists of several steps including the identification of observables, the
definition of the semantic space (by identifying the healthiness conditions), the
proof that all operators are closed in the space, the identification of the laws,
the definition of normal form, and the proof that the laws are complete with
respect to the normal form. From an application point of view, the identified
laws are of the most importance, as they represent our knowledge about the
language.

This paper follows the above approach but introduces further restrictions on
the well-formedness of healthiness conditions. We are interested in the conditions
under which one semantic model can inherit the laws (and other properties) of
another model. If a number of existing models are placed in a hierarchical struc-
ture, it then becomes much easier to develop a new model extending the existing
ones, as many laws can be inherited, with various proof obligations alleviated.

In UTP, each program or specification is represented as a predicate. Program
combinators become the operators on predicates. To simplify the manipulation
of predicates, we use a notation called generic composition [2]. A generic compo-
sition is a relational composition with a designated interface consisting of several
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logical variables. Generic composition has an inverse operator. With the help of
the two operators, we no longer need the existential and universal quantifiers.
Healthiness conditions defined with generic composition can then be manipu-
lated with the higher-level laws of generic composition.

Section 2 introduces generic composition. Section 3 defines the idempotence
and commutativity of predicate functions in general and identifies the necessary
disciplines of semantic definitions. Section 4 formalises the conditions for inher-
itance between semantic models. Section 5 introduces the set-theoretic model of
predicate calculus, a model with alphabetic restriction and a model of binary
relations.

2 Generic Composition

As a convention we let x, y, z, r, s, t, x0, y0, · · · denote individual variables and
u, v, w, u0, v0, · · · denote variable lists. A variable x can be decorated as x, x′

and so on. Decorating a list of variables preserves the order of the list. For
example, if v =̂ x, y, z then v′ = x′, y′, z′. For convenience, we use {v} to
denote the set {x, y, z} of variables

We accept two classes of logical variables: non-overlined variables such as
x, y, z, x′, y′ · · · and overlined ones such as x, y, z, x′, y′, · · · . Overlining is only
used to associate corresponding logical variables syntactically. We assume that
overlining can only be applied once. Thus x is not considered a logical variable.
A generic composition is a relational composition with a designated interface of
non-overlined variables.

Definition 1. P :v R =̂ ∃v0 · P [v0/v] ∧ R[v0/v] .

A fresh variable list v0 is used to connect the list v of P and the list v of R
with the interface v0 hidden by the existential quantifier. Generic composition
is a restricted form of relational composition. It relates two predicates on only
some of their logical variables. For example, the following composition relates
two predicates on only x (and x for the second predicate):

(x= 10 ∧ y = 20) :x (x� x ∧ z =30) = (10 �x ∧ y = 20 ∧ z =30).

The existential quantifier ∃x ·P is simply represented as P :x true , and vari-
able substitution P [e/x] as P :x (x = e) . A generic composition with an empty
interface becomes a conjunction: P : R = P ∧R .

Generic composition has an inverse operator denoted by P /v R, which is the
weakest predicate X such that X :v R ⊆ P . It can be defined by a Galois
connection.

Definition 2. X ⊆ P /v R iff X :v R ⊆ P for any predicate X .

Generic composition and its inverse satisfy a property:

P /v R = ¬ (¬P :v R∪) = ∀v0 · (R[v0/v, v/v] ⇒ P [v0/v])
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where R∪ =̂ R[v/v, v/v] is the converse of R for the variable v . Univer-
sal quantifier ∀v ·P can then be written as P /v true . Negation ¬P becomes
false /P with an empty interface. Implication P ⇒Q becomes Q/P with an
empty interface. Disjunction P ∨ Q is a trivial combination of negation and
implication. Thus all connectives, substitution and quantifiers become special
cases of generic composition and its inverse [2]. The above theorem shows the
expressiveness of generic composition for predicate manipulation.

Theorem 1. Generic composition and its inverse are complete in the sense
that any predicate that does not contain overlined free variables can be written
in terms of generic composition and its inverse using only the constant predicates
and predicate letters.

Generic composition and its inverse form a Galois connection and satisfy the
algebraic laws of strictness, distributivity and associativity.

Laws 1
(1) A ⊆ (A :v R)/v R
(3) false :v R = false
(5) A :v (R ∨ S) = (A :v R) ∨ (A :v S)
(7) A/v (R ∨ S) = (A/v R) ∧ (A/v S)
(9) (A :v R) :v S = A :v (R :v S)

(2) (A/v R) :v R ⊆ A
(4) true/v R = true
(6) (A ∨B) :v R = (A :v R) ∨ (A :v R)
(8) (A ∧B)/v R = (A/v R) ∧ (A/v R)

(10) (A/v R)/v S = A/v (S :v R) .

The notation is especially useful when the interfaces of the operators in a pred-
icate are not identical. For example, in the following law we assume that x ,
y and z are three different logical variables, A = ∃z ·A (independence of the
variable z ) and C = ∃y ·C (independence of the variable y ).

Laws 2. (A :(y,x) B) :(x,z) C = A :(y,x) (B :(x,z) C).

Generic composition and its inverse can be used to define modalities. These
properties make the composition a useful technical tool for linking temporal log-
ics. Generic composition has also been applied to define a variety of healthiness
conditions and parallel compositions. The above laws and a series of other laws
can be found in [2].

3 Predicative Semantics

3.1 Set-Theoretic Predicate Calculus

Any semantic space studied in this thesis is a complete lattice (closed under
arbitrary lub and glb, refer to Proposition 3). Our mathematical foundation
is set theory. However, if we define predicates as sets we can then hide set-
theoretic operators and use predicate calculus directly in our later semantic
studies. Predicate calculus is the most primitive model in our hierarchy and
provides the basis for other semantic models.

Let ν denote the set of all (non-overlined) variables used in semantic models,
and T be a set of all constants. An observation a is a total function a ∈ ν → T.
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A predicate (or ‘program’) is a set of observations. Note that the set ν is also
used if a list is expected where the variables in ν are assumed to be ordered
alphabetically.

Let Pred(ν) =̂ P(ν→T) denote the set of all predicates where P(X) de-
notes the powerset of a set X. It is a complete lattice ordered by ⊇, the lub is
∩, the glb is ∪, the top is the empty set ∅, and the bottom is (ν → T).

The following table lists all the predicate commands. They are defined as sets
and operators on sets. In the definition e(u) is an expression, x is a variable,
and u is a list of variables.

Command Set-theoretic definition Explanation

true =̂ (ν → T) bottom
false =̂ ∅ top
p(u) =̂ {a : ν→T | p ◦ a(u)= 1} pre-defined Boolean function
P [e(u)/x] =̂ {b : ν→T | e ◦ b(u)= a(x),

a∈P, b † {x �→ a(x)}}
substitution of e(u) for x in P

¬P =̂ (ν → T) \ P negation
∃x ·P =̂ {a⊕ {x �→ t } | a ∈ P, t ∈ T}existential quantification
∀x ·P =̂ ¬∃x · ¬P universal quantification
P ∨Q =̂ P ∪Q disjunction
P ∧Q =̂ P ∩Q conjunction
P ⇒ Q =̂ ¬P ∨Q implication
μ⊥f =̂

⋃ {P |P ⊆f(P )} the weakest fixpoint of monotonic f

Evidently all laws of predicate calculus are true in Pred(ν) and hence com-
plete in the sense that the equivalence between two predicates (without recur-
sion) can be proved in finitely many steps using the laws of predicate calculus.
Note that the syntax of any predicate must be finite, although we allow universal
union

⋃
and intersection

⋂
in set theory.

3.2 Healthiness Conditions and Predicate Functions

In a predicative semantics the denotation of each (generalised) program P is a
predicate, thought of as a binary relation describing the set of behaviors of P . For
example, a predicate x′ = x+1 (or equivalently a relation {(x, x+ 1) | x∈S}
where S is the state space) denotes a sequential program x := x + 1 that in-
creases x by 1. The syntax of the predicate is no longer of primary importance:
two predicates are considered the same if they describe the same relation. This
style of semantics has the substantial advantage of employing only elementary
widely-known mathematics, rendering the resulting theory accessible to most
computer scientists. Technically, its advantages are firstly that it makes available
the set-theoretic operators like universal union and intersection for specifications;
and secondly that it enables semantic denotations to be characterised using some
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fixpoint equations called healthiness conditions. One semantic model is more
concrete than another model if it satisfies a stronger healthiness condition. A
healthiness condition is normally written A = H(A) where H is a predicate
function.

Healthiness conditions provide the key to our hierarchical approach. The rela-
tionships between semantic spaces, the closure of commands and the inheritance
of laws are all closely related to the idempotence and commutativity of predi-
cate functions. For example, a predicate representing a sequential computation
satisfies a disjunctive healthiness condition that if the program has not started
properly, its behaviour is chaotic.

HC 1 (Hok) A = ok ⇒ A

We use Hok(X) =̂ ok ⇒ X to denote the corresponding predicate function.
Some other healthiness conditions in UTP can be re-defined as fixpoints of

predicate functions. The healthiness condition A[false/ok ′] ⇒ A[true/ok ′] de-
scribes the upward closure of ok ′ . It is equivalent to a fixpoint equation:

HC 2 (Hok ′) A = A :ok ′ (ok
′⇒ ok ′).

A stronger healthiness condition A = A � (ok⇒ (ok ′∧v = v′)) describes the di-
vergent behaviour of non-terminating sequential programs and can be re-defined
as a fixpoint equation:

HC 3 (Hdev) A = A :(ok ′,v′) (ok
′⇒ (ok ′ ∧ v′ = v′)).

It can be shown that any Hdev -healthy predicate P (satisfiying P = Hdev(P ))
is also Hok ′-healthy (satisfiying P = Hok ′(P )).

Another healthiness condition A =
�

s A[s/tr, s�(tr′−tr)/tr] describes the
prefix independence of a trace specification and can be re-defined as fixpoint
equation:

HC 4 (Htr) A = A :(tr,tr′) (tr′−tr = tr′−tr) .

The idempotence of the above healthiness functions is a result of generic com-
position’s associativity. More examples of healthiness conditions including some
higher-order ones can be found in Chen [2].

Defining predicate transformer H to equal the right-hand side there, that
identity becomes A = H(A) . Thus the predicates we wish to call healthy are the
fixed points of the transformer H . But for idempotent H (i.e. satisfying H ◦H =
H) the set of fixed points equals the range of H . Since H is also monotonic, that
range is a complete sublattice of predicates (though in the general case, with
differing glb and lub). Such a predicate transformer transforms any unhealthy
predicate to a healthy one. If the healthiness condition of a semantic model is
expressed as the combination of several small healthiness conditions, we must
show that the composition of the healthiness transformers is also idempotent
and monotonic.
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The type of an n-ary predicate function is Pred(ν)n → Pred(ν).

Definition 3 (Pointwise commutativity). 1-ary functions f and g com-
mute for predicative argument P , written (f �� g)(P ), iff f◦g(P ) = g◦f(P ).

In the case that g is a n-ary function (f �� g)(P1, P2, · · · , Pn) denotes the
commutativity of f and g for the predicates P1, P2, · · · , Pn. If f commutes
with 1-ary function g for any predicative argument P , we simply write f �� g.

Definition 4 (Idempotence). A 1-ary function f is idempotent for predica-
tive argument P , written ♦f(P ), iff f ◦ f(P ) = f(P ).

If function f is idempotent for any predicate, we simply write ♦f .

Definition 5 (Closure). A function f is closed with regard to another func-
tion g iff g �� (f ◦ g) .

Definition 6 (Distributivity). A function g distributes through another
function f iff g �� (g ◦ f) .

3.3 Basic Predicate Functions

We are particularly interested in two basic forms of predicate functions: the
disjunctive ones H∨R and the generic ones H:vS where R∈Pred , while S may
contain overlined free variables. A predicate function is called common if it is
the composition of predicate functions in these these forms.

Definition 7. H∨R(A) =̂ A ∨R
H:vS(A) =̂ A :v S

Many predicate functions are common. For example, the conjunctive predi-
cate function H∧R(X) = X :v R is a special generic one when the predi-
cate R does not have free overlined variables. The constant predicate function
H@P (A) =̂ H∧P ◦H∨true is a composition of a conjunctive function and a dis-
junctive one. The following theorem shows the generality of common predicate
functions:

Theorem 2. A predicate function L is common, iff it satisfies universal dis-
junctivity such that L(

∨
M) =

∨ {L(P ) | P ∈M} for any M ⊆ Pred(ν).

Proof. The disjunctivity of a common predicate function directly follows the
disjunctivity of disjunction and generic composition. On the other hand, any
universally disjunctive predicate function L can be represented as H∨S ◦H:νR

where S = L(false) and R =
∨ {(ν = a ∧ ν ∈L({a})) | a∈ ν→T} . �

The following table lists the conditions for idempotence of common predi-
cate functions. They can be proved using the laws of generic composition in
Section 2.
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Function Condition for Idempotence

H∨R true
H:vR R = R :v R

H∨S ◦H:vR (S :v R) ⇒ S and R = R :v R

H:vS ◦H∨R S = (S :v S)
H:vS ◦H:vR (R :v S) = (R :v S :v R :v S)

The following table lists the conditions for commutativity of predicate functions:

Function Function Condition for Commutativity

H∨R H∨S true
H∨R H:vS R = R :v S

H∨R H:vS ◦H∨R R ⇒ R :v S

H:vR H:vS (R :v S) = (S :v R)

Unification of semantic models becomes more systematic if we adopt these
disciplines, which need to be strong enough to allow inheritance but flexible
enough to incorporate various computational models.

3.4 Semantic Spaces

In this paper each semantic space is a set of predicates satisfying a healthiness
condition. The healthiness condition is defined by a fixpoint equation A = H(A)
in which H is a healthiness function, i.e. a monotonic and idempotent predicate
function:

Definition 8. A set H(Pred(ν)) of predicates is a semantic space if H is a
healthiness function.

Since a semantic space is characterises by a healthiness function, we can study the
properties of semantic spaces by only considering their corresponding healthiness
functions.

Proposition 3. Any semantic space is a complete lattice.

Proof. Let f :S→ S be a monotonic and idempotent function on a complete lat-
tice S. Let T =̂ f(S). �S and �T denote the lub s of S and T respectively. Ap-
parently T ⊆ S. Then for any E ⊆ T, E is a set of fixpoints of f and f(E) = E.
Thus %Sf(E) = %SE ∈ S and f(%SE) ∈ T. For any e ∈ E, f(e) = e ! %SE
and e = f(e) = f2(e) ! f(%SE), or f(%SE) is an upper bound of E in T.
Let t ∈ T be an upper bound of E, i.e. for any e ∈ E, f(e) ! t = f(t) and
%SE = %Sf(E) ! t. Thus f(%SE) ! f(t) = t, or f(%SE) = %TE. Glb is the
dual of lub. Thus T is also a complete lattice. �
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3.5 Commands and Programs

A command is called a primitive command or simply a primitive, if it is a pred-
icate in the semantic space. For example assignment statements are primitives.
A command is called a compositional command or simply a composition, if it is
an n-ary predicate function closed in the semantic space. For example, the se-
quential composition of any two healthy predicates of semantic space must also
be in the space.

Definition 9. An n-ary composition f is closed in a semantic space M if for
any P1, P2, · · · , Pn ∈M, f(P1, P2, · · ·Pn) ∈M.

Proposition 4. A composition f is closed in a semantic space H(Pred(ν))
iff the function f is closed with regard to the healthiness function H.

A program letter is an arbitrary predicate in a semantic space. A command tree
is a finite tree whose leaf nodes are either primitives or program letters and non-
leaf nodes are compositions. For example, x′ = x + 1 � P is a command tree in
which x′ = x + 1 is a primitive command, P is program letter, and � is the
composition between them. We can represent a command tree f as a generalised
predicate function:

f(P1, · · · , Pn ; Q1, · · · , Qm)

where each Pi is a primitive command and each Qj is a program letter. A
program is a command tree without program letters.

A command directly defined in its parent model is called basic. A command
defined as the combination of a finite number of basic commands is called derived.

3.6 Laws

An algebraic law is an equation between two command trees, each of which may
include some program letters. For example, P ∨Q = Q ∨ P is an algebraic law
in predicate calculus. P and Q are program letters. The equation must hold for
any program letters in the semantic space. A refinement law is an inequation
between two programs. The refinement order A ! B means B always implies A.
For example, P ! P ∧ Q is a refinement law. It holds for any program letters
P and Q. In general a refinement law P ! Q can be expressed algebraically as
P = P � Q.

Definition 10. f(P1, · · · , Pn ; Q1, · · · , Qm) = g(P ′
1, · · · , P ′

n′ ; Q′
1, · · · , Q′

m′)
is a law in a semantic space H(Pred(ν)), if P1, · · · , Pn, P ′

1, · · · , P ′
n′ ∈

H(Pred(ν)) and the equation holds for any Q1, · · · , Qm, Q′
1, · · · , Q′

m′ ∈
H(Pred(ν)).

3.7 Normal Form and Completeness

Normal form is a general technique used to show the adequacy (or completeness)
of a set of algebraic laws. The normal form of a language is a sub-language with
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more restricted syntax. It is easier to compare two programs in the same normal
form. If any program of the model can be reduced to a normal form in finitely
many steps using just the algebraic laws, the laws are considered ‘complete’ for
the normal form [3].

3.8 Semantic Models

We can now formalise semantic models.

Definition 11. A quadruple (H, P , C, L) is a semantic model, if

1. H is a healthiness function;
2. P is a set of primitives s.t. P ⊆ H(Pred(ν));
3. C is a set of compositions, each C ∈ C of which is closed with regard to H;
4. L is a set of laws that always hold for any program letters in H(Pred(ν)),

and each law consists of only primitives in P and compositions in C.

Note that we H(Pred(ν)) to denote the image of the predicate set Pred(ν)
through the healthiness function H . A quadruple (H, P1, C1, L1) is a reduced
model of (H, P2, C2, L2) if P1 ⊆ P2, C1 ⊆ C2 and L1 ⊆ L2.

4 Semantic Inheritance

The main purpose of hierarchical semantics is reuse, and the main technique
to achieve so is inheritance. Disciplines are needed to support inheritance. The
inheritance of a semantic model includes the inheritance of its healthiness con-
ditions, commands (including primitives and compositions) and laws (including
recursions).

4.1 Inheritance of Healthiness Functions

The inheritance of a semantic space is the same as the inheritance of its health-
iness function.

Definition 12. Let H1 and H2 be healthiness functions. H2 inherits H1 iff
H2 = H2 ◦H1.

For example, we can apply a new healthiness function H to the healthiness
function H1 of semantic space H1(Pred(ν)). If their composition H ◦ H1 is
idempotent, it becomes a healthiness function that inherits H1. This function
characterises a new semantic space H ◦ H1(Pred(ν)) where H is called an
additional healthiness function. This has been our standard technique. To in-
herit the healthiness function of an existing semantic space, we apply a new
additional healthiness function to it and then prove the idempotence of their
composition.
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4.2 Inheritance of Commands

The commands of an abstract model can be inherited by a more concrete model.
However, primitives and compositions are treated differently.

A primitive P of an abstract model M is a constant predicate healthy in
terms of HM. It can be unconditionally inherited as HN(P ) by any concrete
model N where HN forces the command to be healthy in the model N. That
means the inherited primitive is no longer the original predicate! For example,
assignment statement x := x+ 1 is denoted by a predicate x′ = x+ 1. To model
termination, [4] introduced a healthiness condition A = ok ⇒ A where ok is
a fresh variable denoting the proper start of a computation. The assignment
statement is then inherited as ok ⇒ x′ = x + 1, which is clearly different from
its original definition.

A composition is a function closed in the semantic space of a model. We re-
quire a composition to be inherited exactly as its original definition. Not meeting
this requirement will inevitably lead to unnecessary complexity in later semantic
studies. For example sequential composition should always be relational compo-
sition. To enable inheritance, we need to prove its closure in the model inheriting
it. In some cases syntactic restrictions are needed to ensure that a composition
is closed in the new semantic space.

The following proposition helps decompose the closure of a composition f
into its closure with regard to the individual healthiness functions g and h
respectively.

Proposition 5 (Inheritance of compositions). If H1 and H2 are healthi-
ness functions, the composition f is closed with regard to H1 and H2, and H2 is
closed with regard to H1, then the composition f is closed in regard to H2 ◦H1.

Proof.

H2 ◦H1 ◦ f ◦H2 ◦H1
= H1 �	 H2 ◦ H1 and idempotence of H1
H2 ◦H1 ◦ f ◦H1 ◦H2 ◦H1
= H1 �	 f ◦ H1 and idempotence of H1
H2 ◦ f ◦H1 ◦H2 ◦H1
= H1 �	 H2 ◦ H1 and idempotence of H1
H2 ◦ f ◦H2 ◦H1
= H2 �	 f ◦ H2 and idempotence of H2
f ◦H2 ◦H1
= idempotence of H1 and H2
f ◦H2 ◦H2 ◦H1 ◦H1
= H1 �	 H2 ◦ H1
f ◦H2 ◦H1 ◦H2 ◦H1

thus, the composition f is closed with regard to H2 ◦H1. �

4.3 Inheritance of Laws

The following theorem identifies an easy-to-check condition under which a law
can be inherited.
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Theorem 6 (Inheritance of laws). If the additional healthiness function of
a new model commutes with any composition for its arguments in a law, then
that law can be inherited by the new model.

Proof. Let f(P1, · · · , Pn ; Q1, · · · , Qm) = g(P ′
1, · · · , P ′

n′ ; Q′
1, · · · , Q′

m′) be a
law in an abstract model H1(Pred(ν)), which is inherited by a concrete model
H◦H1(Pred(ν)) where H is an additional healthiness function, which commutes
with any composition for its arguments. Then H commutes with f and g for their
arguments respectively:

f(H(P1), · · · , H(Pn) ; H(Q1), · · · , H(Qm))
= g(H(P ′

1), · · · , H(P ′
n′) ; H(Q′

1), · · · , H(Q′
m′)) .

Consequently,
f(H(P1), · · · , H(Pn) ; Q1, · · · , Qm)

= g(H(P ′
1), · · · , H(P ′

n′) ; Q′
1, · · · , Q′

m′)

must be a law in H(Pred(ν)) , because any program letter Qi in H(Pred(ν))
is a fixpoint of H and any primitive Pi is inherited with H automatically ap-
plied to it. �

Example: The following law needed to be re-proved in [4] (section 3.1) when
new healthiness conditions for termination/nontermination were added:

v := e � P � b � Q = (v := e � P ) � b ◦ e � (v := e � Q) .

To inherit such laws systematically, we need to identify some general conditions
for the inheritance. According to Theorem 6, a new healthiness function must
commute with ( � ) for its two arguments in the law: v := e and an arbitrary
program letter. We also need to show that the new healthiness function com-
mutes with �b� (see Theorem 14). �

Theorem 7. A law without primitives can be inherited directly by a a new model
with an additional healthiness function, if the additional healthiness function is
closed with regard to the original healthiness function.

Corollary 8. A law of Pred(ν) without primitives can be inherited directly by
any semantic model.

Example: The equation P ∨Q = Q ∨ P is a valid law in a model if the com-
position ∨ is closed in the semantic space. Any healthiness function commutes
with a closed composition for any healthy arguments. �

4.4 Inheritance of Semantic Models

A semantic model can be inherited if its healthiness function, commands and
laws can be inherited.
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Definition 13. Let M1 =̂ (H1, P1, C1, L1) and M2 =̂ (H2, P2, C2, L2) be
two semantic models. M2 inherits M1 , if H2 ◦ H1 = H2 , H2(P1) ⊆ P2 ,
C1 ⊆ C2 and L1 ⊆ L2 .

Proposition 9. If M2 is a reduced model of M1 , then M2 inherits M1 .

The following theorem summarises the conditions of inheritance of semantic
models.

Theorem 10 (Inheritance of semantic models). Let M1 =̂ (H1,P1, C1,
L1) and M2 =̂ (H2, P2, C2, L2) be two semantic models. M2 inherits M1 , if

1. there exists an additional healthiness function H , s.t. H2 = H ◦H1 ;
2. for any C ∈ C1, C is closed with regard to H, i.e. H �� C ◦H;
3. for any L ∈ L, H commutes with any composition C for its arguments in

the law L, i.e. (H �� C)(A1, A2, · · · , An).

4.5 Inheritance of Fixpoints

According to Tarski’s theorem [5], any monotonic function f on a complete
lattice (or a domain) has a weakest fixpoint, denoted by μ⊥f . The theorem
reveals that we can recursively apply the function to the bottom element ⊥ :

⊥ ⊇ f(⊥) ⊇ f2(⊥) ⊇ · · · ⊇ fω(⊥) ⊇ fω+1(⊥) ⊇ · · · ⊇ f ι(⊥) ⊇ · · ·

where f ι(⊥) =̂ f (
⊔ {fκ(⊥) | κ is an ordinal, κ ≺ ι} ) and μ⊥f is formally

defined by: ⊔
{f ι(⊥) | ι is an ordinal} .

We first look at the inheritance of Tarski’s weakest fixpoint μ⊥f . A fixpoint
of a recursive function f is a primitive command, and hence must be trans-
formed to the corresponding fixpoint in a more concrete model by an additional
healthiness function H . A major theorem in [4] (section 4.1) showed that under
certain sufficient conditions, a healthiness function transforms a weakest fixpoint
to the weakest fixpoint in a more concrete model. However, those results are not
very applicable in practice. In fact, function f may contain primitive commands,
which may be changed by additional healthiness functions. That means the cor-
responding function in a more concrete model is in general not the same as the
original recursive function (refer to section 4.2 for an example)!

The following theorem solves the above problem by treating a recursive func-
tion as a command tree.

Theorem 11 (Inheritance of weakest fixpoint). If the additional healthi-
ness function H of a new model commutes with any composition for its argu-
ments in a recursive function f(X) where X is any predicate in the original
model, then

H(μ⊥f) = μH(⊥)(H ◦ f) .
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Proof. According to assumption, H commutes with any composition for its ar-
guments in f(X) =̂ F (P1, · · · , Pn ; X) where F is a command tree, each Pi is
a primitive, and X is a program letter of the abstract model. Thus H ◦f = H ◦
f ◦H where

H ◦ f(X) = F (H(P1), · · · , H(Pn), H(X)) .

We then need to show that H(μ⊥f) = μH(⊥)H ◦ f . This can be done by induc-
tion on ordinals:

1. H(⊥) = H(⊥);
2. if H ◦ fκ(⊥) = (H ◦ f)κ ◦H(⊥),

then H ◦ fκ+1(⊥) = H ◦ f ◦H ◦ fκ(⊥) = (H ◦ f)κ+1 ◦H(⊥).

fκ(⊥) and (H ◦f)κ+1(H(⊥)) reach their weakest fixpoints before exhausting the
elements of their semantic space respectively. Thus H(μ⊥f) = μH(⊥)(H ◦ f).�

It is not surprising that the inheritance of recursions is similar to the inheritance
of laws. Indeed a recursion μ⊥f = F can be considered a law in which F is
a primitive and μ⊥f is an infinite command tree. For example the recursive
program μ⊥X · (v := e � X) is inherited as μH(⊥)X · (H(v := e) � H(X)) in a
derived model with an additional healthiness function H . The strongest fixpoint
can be treated similarly by reversing the order of the complete lattices.

5 Basic Semantic Models

5.1 Predicate Calculus

Simple commands of programming languages can be directly derived from pred-
icate calculus in Pred(ν).

⊥ =̂ true chaos (the bottom)
' =̂ false magic (the top)
P � Q =̂ P ∨Q glb, nondeterministic choice
P % Q =̂ P ∧Q lub
P � b � Q =̂ (b % P ) � (¬b % Q) binary conditional

Note that, in general, the glb and lub in a predicate-semantic space are not the
logical conjunction and disjunction unless � and % are closed in the space.
This is guaranteed by the requirement of their inheritance.

Nondeterministic choice commutes with any conjunctive, disjunctive and
generic predicate functions and their composition. Thus � is closed in common
semantic spaces and hence can be directly inherited.

Theorem 12 (Inheritance of glb). For any R and S, H∨R and H:vS com-
mute with nondeterministic choice �.
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Lub % is closed with regard to any weakening idempotent generic predicate
function. It also commutes with any conjunctive and disjunctive predicate func-
tion. If the healthiness function of a model is a composition of disjunctive, con-
junctive and generic predicate functions, Proposition 5 guarantees the closure
of % .

Theorem 13 (Inheritance of lub). For any R, S and T , if T is idempo-
tent T = T :v T and weakening T ! (v = v), then % is commutative with H∨R

and closed with regard to H:vT .

Proof. % ’s commutativity with H∨R is trivial. To prove its closure with regard
to H:vT , we first need to check a condition where v0 and v1 are ‘fresh’ variables:

T (v0, v) ∧ T (v1, v)
=
(T (v0, v) ∧ T (v1, v)) :v v = v
� T is weakening, i.e. T � v = v
(T (v0, v) ∧ T (v1, v)) :v T
� property of relational compositions
(T (v0, v) :v T ) ∧ (T (v1, v) :v T )
= idempotence T = T :v T
T (v0, v) ∧ T (v1, v).

Thus, T (v0, v)∧ T (v1, v) = (T (v0, v)∧ T (v1, v)) :v T , and for any pair of P and
Q, we have:

H:vT (P ) % H:vT (Q)
= definition of generic predicate function
P :v T % Q :v T
= definition of generic composition
∃v0v1 ·P0 ∧Q1 ∧ T (v0, v) ∧ T (v1, v)
=
(∃v0v1 ·P0 ∧Q1 ∧ T (v0, v) ∧ T (v1, v) ) :v T
= definition of generic predicate function
H:vT (H:vT (P ) % H:vT (Q) )

where P0 =̂ P [v0/v], Q1 =̂ Q[v1/v], and T (va, vb) =̂ T [va, vb/v, v]. �

Binary conditional �b� commutes with any conjunctive and disjunctive predi-
cate functions. It also commutes with any generic predicate function H:vT if b
does not depend on the interface v. This means, with some minor restriction,
binary conditional is closed in a common semantic space.

Theorem 14 (Inheritance of conditional). For any R, S and T , if b =
∃v · b, then H∨R and H:vT commute with binary conditional �b�.

Basic Laws I. The basic laws of glb, lub, conditional and recursions are listed
as follows:

Laws 3 (1) ⊥ � P = ⊥
(3) ⊥ % P = P

(2) ' � P = P
(4) ' % P = '
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Laws 4 (1) P � P = P
(3) P � Q = Q � P

(2) P % P = P
(4) P % Q = Q % P

(5) (P � Q) � R = P � (Q � R)
(6) (P % Q) % R = P % (Q % R)
(7) (P � Q) % R = (P % R) � (Q % R)
(8) (P % Q) � R = (P � R) % (Q � R)

Laws 5 (1) P � b � P = P
(3) P � b � Q = Q � ¬b � P

(2) P � true � Q = P
(4) P � false � Q = Q

(5) P � a � (Q � b � R) = (P � a � Q) � a ∨ b � R
(6) P � a � (Q � b � R) = (P � a � Q) � b � (P � a � R)
(7) (P � Q) � b � R = (P � b � R) � (Q � b � R)
(8) P � b � (Q � R) = (P � b � Q) � (P � b � R)

Laws 6 (1) f(μ⊥f) = μ⊥f
(2) X � f(X) ⇔ X � μ⊥f

A healthiness function is monotonic and transforms bottom and top to the bot-
tom and top respectively in a new model. Note that any semantic space here is
a complete lattice, and thus Laws 3 is inherited directly by any semantic model.
Laws 4 and 5 do not contain primitives. Thus:

Lemma 15. Laws 4 and 5 are inherited by a semantic model in which � , %
and �b� are closed.

The inheritance of Laws 6 is guaranteed by Theorem 11.

Theorem 16. Basic Laws I are inherited by a semantic model if all basic
commands are inherited.

5.2 Alphabets

Model Alpha(w) is a sub-model of Pred(ν) where w is a list of logical vari-
ables. It adds the healthiness condition of alphabetic restrictions to Pred(ν).
An alphabet w is a set of variables without overlines. An alphabetically-restricted
predicate does not depend on any variable outside the alphabet. Note that
healthiness condition for alphabet is nothing more than a mathematical repre-
sentation of the alphabet (or similarly the frame). A predicate observes a certain
alphabetical restriction if it satisfies the following healthiness condition.

HC 5 (Ha) A = A :ν (w = w)

All commands of Pred are inherited by Alpha(w). The only restriction is
that the parameter expression e in substitution should not contain any variable
outside of w and no new variable is introduced by generic composition.
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5.3 Binary Relations

Model Rel(v) is a sub-model of Alpha(w). The alphabet w is partitioned into
two lists v and v′ of variables such that w = {v, v′ }. The list v of variables,
called the input alphabet consisting of all undashed variables and records the
observation at the start of a computation; the list v′, called the output alphabet,
consists of all dashed variables and records the observation at the end of the
computation.

+ what is a sub-model?
Rel(v) inherits the following commands from Alpha(w). Note that b in

�b� must satisfy b = ∃v′ · b and a recursive function f contains only commands
of Rel(v).

⊥ ' � % � b � μ⊥f

A couple of new basic commands are introduced in Rel(v). In the following
table we assume that {s, t} ⊆ {v}, and e is a list of expressions, each of which
is a total function and can be calculated in finitely many steps.

s := e(t) total assignment statement
P � Q sequential composition

Definition 14. s := e(t) =̂ (s′ = e(t) ∧ u =u′) where u = v \ {s}.
Definition 15. P � Q =̂ ∃v0 · (P [v0/v′] ∧ Q[v0/v]) where v0 is a list of new
variables.

No new variables are introduced outside of the alphabet, and hence all commands
are closed. Some commands can be derived from the abstract ones.

II =̂ v := v skip, no operation
(b)� =̂ II � b �' conditional magic (b = ∃v′ ·b)

Basic Laws II. The basic laws involving assignment statements and sequential
composition are as follows:

Laws 7 (1) ( s, s, t := e, f, g ) = ( s, t := e, g � e = f �' )
(2) s := e = s, t := e, t ( s � t )
(3) s, t := e, f = t, s := f, e
(4) u, s, t := e, f, g = s, t, u := f, g, e
(5) ( s := e � s := f ) = ( s := f ◦ e )
(6) s := e � (b)� = (b ◦ e)� � s := e
(7) (a)� � (b)� = (a ∧ b)�

Laws 8 (1) ' � P = '
(3) v := f � ' = '

(2) ⊥ � v := e = ⊥
(4) v := e � ⊥ = ⊥

(5) II � P = P � II = P
(6) P � (Q � R) = (P � Q) � R
(7) P � (Q � R) = (P � Q) � (P � R)
(8) (P � Q) � R = (P � R) � (Q � R)
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Laws 9 (1) P � b � Q = ((b)� � P ) � ((¬b)� � Q)
(2) s := e � P � b � Q = (s := e � P ) � b ◦ e � (s := e � Q)
(3) (P � b � Q) � R = (P � R) � b � (Q � R)

If a Rel(v) program is composed of a finite number of the following commands

' � �b � s := e(t) ( � )

then it can be reduced to the following normal form N in finitely many steps [3]:

N =
�

i�n ((bi)� � v := ei(v))

Any finite non-recursive program in Rel(v) can be reduced to the above nor-
mal form in finitely many steps using the basic laws. This (relative) completeness
theorem can be found in [3, 4].

5.4 Sequential Programming

Sequential programming with recursion requires additional observables ok and
ok ′ to represent termination and nontermination. Most commands of binary re-
lations except the lub operator are inherited. Note that the variable ok must not
appear as a program variable in any sequential program. The model of sequential
programs Seq(w) is a subset of Rel(v) where {w, ok } = {v} . The healthiness
condition is A = Hdev ◦ Hok ◦ Ha(A) . The additional healthiness function is
defined: Hseq =̂ Hdev ◦Hok .

The question is which laws of binary relations can be inherited by sequen-
tial programming. The challenge is that, in general, the additional healthiness
function Hseq does not commute with sequential composition. In fact the com-
mutativity only holds when the first argument of a sequential composition always
terminates from any initial state. We introduce a new conjunctive healthiness
condition (hence also a generic one):

HC 6 (Htm) A = A ∧ (ok = ok ′) = A :(ok, ok′) (ok = ok ′).

A predicate represents a terminating computation if it is a fixpoint of the health-
iness function Ht where Ht =̂ Hseq ◦Htm ◦Ha . The following theorem shows
that, in a sequential composition, if the first program always terminates and the
second program is a normal sequential computation, then Hseq commutes with
the sequential composition. Note that Hseq is idempotent.

Theorem 17. The healthiness function Hseq commutes sequential composi-
tion � on Ht and Hseq, i.e. Hseq(Ht(P ) � Hseq(Q)) = Ht(P ) � Hseq(Q).

Given that the first arguments of all sequential compositions in Basic Laws II
are Ht-healthy, we conclude that all the laws can be inherited.
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6 Conclusion

This paper has introduced techniques to organise various predicate-semantic
models in a hierarchical structure so that the construction of a semantic model
can be based on the reuse of more abstract models. The restrictions in this
paper are more strict than those of the original theory of UTP. For example,
the precondition for the inheritance of fixpoints is stronger than the sufficient
conditions originally identified. Although the additional restrictions might ex-
clude some well-defined theoretical models, they do admit common real lan-
guages. The combination of disjunctive and generic healthiness functions is
general enough to represent any healthiness function that distributes univer-
sal disjunction (i.e. observation-based and relational). Non-trivial healthiness
conditions such as H2 and R2 in UTP are typical generic healthiness conditions.
Some healthiness conditions such as convexity in probabilistic models require
the second-order (or high-order) generic composition. An extension to this work
is needed for those models.

The advantage of more disciplined models is that many tedious proof obli-
gations related to well-definedness of the combinators (i.e. the closure in the
semantic space) and the laws can be reduced to straightforward checking of sim-
ple conditions. The use of generic composition helps lift the level of reasoning
up to a level similar to modal/temporal logics. Indeed generic composition can
be regarded as a two-ary modality. The power of generic composition for writing
healthiness condition has been demonstrated in a previous paper [2].
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Abstract. We demonstrate a new unification of probability with stan-
dard computation in which a nonzero chance of disaster is treated as
disaster. Laws and a Galois connection with the more traditional proba-
bilistic model are provided. Reversibility in the probabilistic guarded-
command language is discussed. Finally the formalism is applied to
unify quantum computation and cryptography within the probabilistic
method.

1 Introduction

In the world at large, probabilism offers a simple, fast and unbiased choice be-
tween alternatives. So it is in programming where the probability, instead of
being constant, may be state dependent. Its use therefore provides an alterna-
tive to a time or space intensive computation for resolving a choice. For not only
is its use efficient in both those senses, but it may provide a symmetrical algo-
rithm where no (efficient) non-probabilistic symmetric algorithm exists. However
the price to be paid for these worthwhile benefits is that some probabilistic al-
gorithms meet their ideal specifications with only high probability.

Probabilistic techniques have been used in mathematics for over two cen-
turies. A popular example consists of Buffon’s method of estimating π by using
a physical process of dropping needles on a grid. A less commonly appreciated
application establishes that certain properties hold almost everywhere (i.e. with
probability 1) in spite of the fact that individual examples are unknown or
very hard to establish (for example in number theory). However only in 1955
was the foundation laid for probabilistic algorithms, in the form of probabilis-
tic Turing machines. In the 1970s Monte Carlo methods (e.g. primality testing)
became popular, particularly in numerical mathematics. Since then the use of
probabilism has burgeoned in Computing Science. It has been used, for exam-
ple: to defeat an input adversary and hence to improve average-case efficiency
(e.g. quicksort with randomly-chosen pivot); to overcome difficulties due to sym-
metry (e.g. randomised backoff); in efficient symmetrical distributed algorithms
(e.g. choice coordination); and in quantum algorithms (e.g. Shor’s algorithm).
More recently the foundation has been extended to embrace the nondeterminism
inherent in the contemporary more abstract treatment of algorithms, so that a
refinement calculus is now in place [MM05]. It is that work which we exploit in
this paper.
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One approach to using formal methods to reason about probabilistic programs
or systems would be to use a standard (non-probabilistic) method to reason
about the non-probabilistic aspects of the program or system and then to use
probability theory to ‘graft on’ an argument about the probabilistic behaviour.
We follow the alternative approach championed in [MM05, H04] which extends a
standard formal method to embrace probability, thus achieving a homogeneous,
unified method. This unification is sensible only if the resulting method is not
appreciably more complex than its original standard basis. All case studies so
far point overwhelmingly to that being the case.

We take as implicit that programs and systems are specified and verified either
by step-wise derivation from their specification or by verification establishing re-
finement. The basis in either case is of course the same: a ‘refinement’ relation !
on the space of computations that includes both operation and data refinement.
An implementation is simply a refinement that is expressed in a restricted sub-
set of computations decreed to represent executable computations or (abstract)
‘code’.

We promote the use of laws, as distinct from semantic reasoning, wherever
possible. Both approaches are consistent with unifying theories of programming
[HH98] and are interdependent. A semantic model shows a set of laws to be
sound; a set of laws encapsulates properties of a semantic model. And the Galois
connection that shows one semantic model to be a refinement of its coarser
approximation does the same for the two corresponding sets of laws. But laws
are more readily automated, more easily appreciated by practitioners, and build
on existing algebraic facility in a which semantics tends not to.

In this paper we broach three topics involving probability. The first topic
concerns a weaker model than that used to date to augment functional behaviour
with probability. In the standard program calculus, abort � A = abort: if a
program may (nondeterministically) fail it is assumed actually to do so. The
reason is that we want our design calculus to be ‘conservative’ in the sense that
its products are always valid, not just (nondeterministically) sometimes so. By
equating nondeterministically possible abortion with abortion we ensure that if
the system might not fail then it will not.

One of the motivations for introducing probabilism into a formal method is to
enable that decision to be revised and refined. A program or system that behaves
(demonic-) nondeterministically like either A or B , A�B , can be refined to be-
have like a probabilistic choice between them. For example the equi-likely choice
is written A 1

2
⊕B , so that A�B ! A 1

2
⊕B and in fact the refinement is strict.

The same remains true of any probability p in place of 1
2 . The resulting language

(in our case pGCL: the guarded-command language plus probability) enables a
far weaker statement to be made than merely that the nondeterminism is re-
solved to either A or B . It specifies the probability with which it is to be resolved.

In particular abort1
2
⊕A is quite distinct from abortbecause it has probability

only 1
2 of aborting. In particular probabilism is non-strict, like the conditional

it generalises:

B � b � A = B b⊕A .
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(wherein we have identified predicate b on state space with a 0 or 1-valued
function). And frequently (but not probably) that is exactly what we wish to
describe. But early in the design process it may be premature and we might wish
to adhere to the original conservative principle that even a positive chance of
abortion should be abortion. That is the model we consider here. Probabilism,
⊕ , becomes strict:

∀ p : (0, 1] · abort p⊕A = abort .

It might be thought that since the model is coarser than pGCL we would
construct a new model and present its laws. But we benefit from the unifying
theories approach by simply embedding the new model in pGCL via a well-
behaved Galois connection, strong enough for us to be able to infer the laws we
seek from those in pGCL.

Our second topic, reversibility, arose during the workshop. The stimulating
paper [SZL06] surveyed the notion of reversible computation from its original
physical origins to more recent work on pGCL. Here we present a complementary
approach for comparison with the one taken in that paper. There the approach
to reversibility allows extra state to be added to enable a computation, either en
bloc or step-by-step, to be reversed. Here we are more stringent and investigate
reversibility in which no extra state is permitted. We call it strict reversibility
and show that in pGCL it reduces to GCL where it is equivalent to bijective
assignment.

Our third topic, quantum computation, is a topic of considerable current in-
terest. Apart from providing an introduction to it from the viewpoint of formal
methods, we make the case that both sequential and distributed quantum com-
putations can be unified in the probabilistic method. In this section we discuss
work in progress, and concentrate on expressing the quantum algorithms and
protocols in pGCL. The challenge remaining pertains to the stepwise derivation
of the algorithms using data refinement in pGCL. Progress and difficulties are
surveyed.

2 Probabilistic Guarded Commands

Before recalling the probabilistic guarded-command language pGCL we recall the
standard guarded-command language and introduce some convenient notation
within it.

2.1 The Guarded-Command Language

The guarded-command language with its refinement relation (GCL,!) provides
a convenient forum for the calculus of procedural programming. Its combinators
are recalled in Figure 1. The binary conditional A � b � B is read, and stands
for, A if b else B . The other combinators, and the laws they satisfy, ‘need no
introduction’. When we wish to emphasise that the underlying state space is X
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skip no op
abort divergent computation
magic unenabled computation
x := e assignment

A � b � B binary conditional
A o

9 B sequential composition
μF recursion

var y :Y · A rav local variable
A � B nondeterministic choice
A � B angelic choice
A � B refinement: A � B = A

Fig. 1. Syntax for our variant of the guarded-command language (GCL(X ), �)

we write GCL(X ), and then assignments are to x : X . In this paper we assume
state space X to be finite.

Operationally, a computation is deterministic if from each initial state it is
enabled and terminates in a single (initial-state dependent) final state. It is
predeterministic if from each initial state it is enabled but either fails to terminate
or terminates in a single final state. Formally, a computation is deterministic if
it is !-maximal amongst enabled computations.

Programs in GCL are those GCL computations that are enabled at each
initial state and whose nondeterminism is bounded. As usual, in expressing al-
gorithms we use iteration when it is convenient. But we prefer to take recursion
as primitive, for its generality and for the theoretical convenience of least fixed
points.

Although we express algorithms as programs, we need the extension to pro-
grams provided by angelic choice. Thus (GCL(X ),!) forms not only a complete
partial order with least element abort but also a complete lattice with greatest
element magic. In spite of claims sometimes made to the contrary it is not a
quantale (at least not in both the relational and transformer models), since in
general only these refinements hold:

%{A o
9 B | A ∈ A} ! (%A) o

9 B
%{A o

9 B | B ∈ B} ! A o
9 (%B) .

(In the relational model, intersection only sub-distributes sequential composition
of relations from either side.) With the reversed order one of those refinements
becomes an equality (the one in which the demonic choice occurs at the same
point—first—on both sides)

�{A o
9 B | A ∈ A} = (�A) o

9 B
�{A o

9 B | B ∈ B} � A o
9 (�B) .

The refinement is an equality in the relational model (since union distributes
sequential composition of relations) but not in the transformer model. The lack
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of symmetry between % and � may be explained by neither of the first two
refinements offering a situation in which the angelic choice is offered at the same
point—last—on both sides. With probabilism, even greater subtleties arise.

2.2 Fibres

It will be convenient to have notation that enables us to reason algebraically in
a way that is normally achieved semantically; particularly since, as we have just
seen, the relational and transformer models differ in fundamental ways.

We define the fibre of computation A at initial state x0 to be the computation
that aborts off x0, where it behaves like A. In other words the fibre of A at x0
consists of the assertion x = x0 followed by A.

Definition (fibres). For A : GCL(X ) and E ⊆ X , the fibre of A at E is defined

A • E =̂ (A � x ∈ E � abort ) .

For simplicity, A • {x0} is written A • x0 .

Fibres are distributed by the combinators of GCL. The routine proof follows
directly from the laws of GCL.

Lemma (fibre distribution). For A,B : GCL(X ), x0, x1 : X and predicate b
on X ,

abort • x0 = abort

(A � b � B) • x0 = (A • x0) � b � (B • x0)
(A o

9 B) • x0 = (A • x0) o
9 B

(A � B) • x0 = (A • x0) � (B • x0)
(A % B) • x0 = (A • x0) % (B • x0)
(A • x0) • x1 = (A • x0) � x0 = x1 � abort

= (A • x1) • x0 .

Theorem (fibre normal form). A computation is the bundle of its fibres: for
each A :GCL(X ) ,

A = %{A • x0 | x0 ∈ X }
(in spite of the fact that the right-hand side does not form a directed set).

2.3 The Probabilistic Guarded-Command Language

With those preliminaries, we recall that the probabilistic guarded-command lan-
guage (pGCL,!) consists of the guarded-command language augmented by a
binary combinator for probabilistic choice: for A,B :GCL(X ) and 0 ≤ p ≤ 1,

A p⊕ B
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equals A with probability p and B with probability 1−p . Henceforth we write
p =̂ 1−p . The probability p is an expression over state. Recall that we are
assuming here that state space X is finite.

The refinement relation ! removes nondeterminism as in GCL but now also
increases likelihood1. As expected from the introduction, for example, for any p

A � B ! A p⊕ B .

Indeed one of the laws will confirm that there is no more to nondeterminism
than the combination of all possible probabilistic choices.

2.4 Features of pGCL

The calculus (pGCL,!) incorporates several design decisions that it is worth
pointing out to allay confusion.

Firstly, although there is a difference between certain termination and termi-
nation with probability 1, the two are identified in (pGCL,!) . For example this
program in pGCL(B) does not always terminate.

b := 1 o
9

do b →
(b := ¬b) 1

2
⊕ skip

od

It diverges if the right-hand probabilistic choice is taken on each iteration; but
that occurs with probability 0 (the infinite product of the constant 1

2 ).
To highlight the subtle interaction between probabilism and nondeterminism

we observe that in pGCL disjoint assignments need not commute! For with state
(x , y) :B×B and computations

A =̂ (y := 0) 1
2
⊕ (y := 1)

B =̂ (x := 0) � (x := 1) ,

merely A o
9 B 	 B o

9 A . (To see that the refinement is strict, consider the
probability with which each finally achieves x = y. The left-hand side does
so with probability 0 since although A assigns y to its two values with equal
likelihood, the nondeterministic choice in B acts to minimise the possibility of
achieving the postcondition x = y which it does with x �= y. By comparison, on
the right B assigns x to either of its two values (a nondeterministic choice does
not have prescience) and then the probabilistic choice in A assigns y with equal
likelihood to its two possible values, a choice which coincides with the value of
x with probability 1

2 . Thus the left-hand side achieves the postcondition with
probability 0 whilst the right-hand side achieves it with probability 1

2 ; and so
although ! increases likelihood, equality fails.)

1 We use ‘likelihood’ as synonymous with, but slightly less formal than, ‘probability’,
choosing to ignore any alternative technical interpretation.
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The operational intuition is that the demon resolving the nondeterminism
acts early on the right-hand side and so by embodying fewer possible behaviours
than the later version on the left-hand side yields a more refined computation.

Finally we observe that, as a consequence,

A o
9 (x := 0 � x := 1) ! (A o

9 x := 0) � (A o
9 x := 1) .

(For possible strictness, with A as above we have already seen that the left-hand
side has probability 0 of finally achieving x = y. Now each of the two terms on
the right-hand side achieves it with probability 1

2 , and therefore so too does the
nondeterministic choice on the right.)

Thus even in a relational model for pGCL we cannot expect nondeterminism
to distribute sequential composition on the left. Although neither side explicitly
mentions probabilism, the anomaly is explained by the implicit appearance of
probabilism in nondeterminism (as already mentioned and as about to appear
in one of the laws).

Programs in pGCL consist, like those in GCL, of pGCL computations that
are enabled at each initial state and exhibit bounded nondeterminism and prob-
abilism.

2.5 Laws of pGCL Programming

Laws for probabilism alone are anticipated by calculating the probability with
which each computation occurs on each side.

A 1⊕ B = A
A p⊕ B = B p⊕A
A p⊕A = A

(A p⊕ B) q⊕ C = A pq⊕ (B r⊕ C ) , r = pq/pq

Laws relating probabilism to conditional and sequential composition are

A p⊕ (B � b � C ) = (A p⊕ B) � b � (A p⊕ C )
(A p⊕ B) o

9 C = (A o
9 C ) p⊕ (B o

9 C )
(A o

9 B) p⊕ (A o
9 C ) ! A o

9 (B p⊕ C )

As expected, the first follows from the last law for probabilism alone.
The laws relating probabilism and nondeterminism are, as we have seen, the

most subtle. Since the demon resolving nondeterminism has memory but not
prescience, early nondeterminism offers fewer behaviours and hence refines later
nondeterminism.

A � B = �{A p⊕ B | 0 ≤ p ≤ 1 }
! A p⊕ B

(A � B) p⊕ C = (A p⊕ C ) � (B p⊕ C )
(A �C ) p⊕ (B � C ) ! (A p⊕ B) � C

(A � B) o
9 C = (A o

9 C ) � (B o
9 C )

A o
9 (B � C ) ! (A o

9 B) � (A o
9 C )



180 J. He and J.W. Sanders

The fact that the refinements may be strict means that, in performing data
refinements to derive designs from their specifications, care must be exercised to
ensure that the simulation refinements work in the right direction (when such
care may not be required in GCL). We return to this in Section 5.8.

2.6 Convexity in pGCL

The probabilistic-choice combinator is exact: A p⊕B chooses its arguments with
probabilities p and p . But in many situations p is known only to lie in some
interval, a ≤ p ≤ b . The infinite nondeterministic statement for that,

�{A p⊕ B | a ≤ p ≤ b} ,

is evidently a pGCL computation; but is it code? The following theorem shows
that it is. Its corollary deals with the important special case in which A occurs
with probability at least p (and B with probability at most p).

The convexity principle embodied in this theorem is usually justified ‘geomet-
rically’ using the relational semantics to be introduced in the next section. Here
we choose show that it is a simple consequence of the laws.

Theorem (convexity for pGCL). If 0 ≤ a ≤ b ≤ 1 then

�{A p⊕ B | a ≤ p ≤ b} = (A a⊕ B) � (A b⊕ B) .

Proof. We reason from the right-hand side:

(A a⊕ B) � (A b⊕ B)
= first law in the previous table

�{(A a⊕ B) p⊕ (A b⊕ B) | 0 ≤ p ≤ 1}
= ‘associativity’ law

�{A ap⊕ (B p(1−a)
1−ap

⊕ (A b⊕ B)) | 0 ≤ p ≤ 1}
= skew symmetry law

�{A ap⊕ (B p(1−a)
1−ap

⊕ (B 1−b⊕ A)) | 0 ≤ p ≤ 1}
= ‘associativity’ law

�{A ap⊕ ((B p(1−a)
p(b−a)+1−b

⊕ B) p(b−a)+1−b
1−ap

⊕A) | 0 ≤ p ≤ 1}
= idempotence law

�{A ap⊕ (B p(b−a)+1−b
1−ap

⊕A) | 0 ≤ p ≤ 1}
= skew symmetry law

�{A ap⊕ (A b(1−p)
1−ap

⊕ B) | 0 ≤ p ≤ 1}
= ‘associativity’ law

�{(A ap
ap+b(1−p)

⊕A) ap+b(1−p)⊕ B | 0 ≤ p ≤ 1}
= idempotence law

�{A ap+b(1−p)⊕ B | 0 ≤ p ≤ 1}
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= arithmetic

�{A s⊕ B | a ≤ s ≤ b} .

In particular, with b = 1,

Corollary. �{A p⊕ B | a ≤ p ≤ 1} = A � (A a⊕ B) .

2.7 Relational Semantics of pGCL

The operational intuition concerning the demon in pGCL is sufficiently tenu-
ous to demand a semantic model. Here we sketch the idea behind the relational
model [HSM97]; for further details, for the transformer model and for the (Ga-
lois) connection between the two models see [MM05].

Definition (subdistributions). A subdistribution on a finite set X is a function
from X to the real interval [0,1] whose sum is at most 1:

f : X → [0, 1] ·
∑
{f .x | x ∈ X } ≤ 1 .

For any x0 :X , the point mass at x0 is the subdistribution x̂0 that is 1 at x0 and
0 elsewhere. Subdistributions are ordered pointwise:

f ! g =̂ ∀ x :X · f .x ≤ g.x .

From any initial state x0 a nonprobabilistic deterministic program A termi-
nates in a single final state x1. In the (probabilistic) relational model that final
state is represented by the point-mass x̂1 . The (solid) triangle in Figure 2 repre-
sents the set of all subdistributions on the set B of two values, 0 and 1. The point
masses 0̂ and 1̂ account for two of its extreme points; the third is the (constant)
zero function 0. Any other element of the triangle is a convex combination of
extreme points. For example the mid-point of the diagonal is a 1

2 -convex combi-
nation of 0̂ and 1̂. All points on the diagonal represent subdistributions whose
sum is 1: each is maximal in the !-ordering.

In Figure 2 are shown, therefore, the relational semantics of the assignments
x := 0 and x := 1 in pGCL(B) . Each is particularly simple because it is indepen-
dent of initial state; and each is an extreme point and maximal in the ordering
on subdistributions, as is to be expected.

From any initial state x0 the pGCL(B) computation x := 1 1
2
⊕ x := 0 ter-

minates with a single subdistribution that is 1
2 at each of 0 and 1. Thus it is a

1
2 -convex combination of the point masses 0̂ and 1̂ ; see Figure 2. All such convex
combinations—probabilistic assignments to either 0 or 1—lie on the diagonal
line. And so they are all !-maximal and hence deterministic in pGCL(B) . (It
bears emphasis that determinism is !-maximality. In other areas, like physics
and quantum computation, such probabilistic choices are called nondeterminis-
tic. We shall call them probabilistic or nonstandard, but shall reserve ‘nonde-
terminism’ for the sense conveyed by ! and � on which the entire calculus is
based.)
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Fig. 2. The relational semantics of three deterministic computations
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Fig. 3. The relational semantics of two nondeterministic computations

Thus a deterministic computation is represented, from each initial state, by a
singleton set of subdistributions. A nondeterministic computation is represented
(from each initial state) by a larger set of distributions.

For example the nondeterministic combination of the two deterministic as-
signments x := 0 and x := 1,

x := 0 � x := 1 = �{ (x := 0 p⊕ x := 1) | 0 ≤ p ≤ 1 } ,

is represented by the set of all convex combinations of the two point masses 0̂
and 1̂. See the left-hand side of Figure 3.

Abortion is treated as extreme nondeterminism. The computation abort is
thus represented by a set of subdistributions that contains the constant subdis-
tribution 0 (assigning probability 0 to each final state) and is !-upclosed. It
thus contains every subdistribution and so is represented by the entire triangle
in the figures. Alternatively it is the convex hull of the three subdistributions 0,
0̂ and 1̂ .

The computation that is equally likely to diverge or to assign 1 to x ,

abort 1
2
⊕ x := 1 ,

is represented by the !-upclosure of the set containing just the subdistribution

1
2
×1̂ +

1
2
×0 =

1
2
×1̂ .

Its extreme points are 1
2×1̂, 1̂ and 1

2 0̂ + 1
2 1̂ ; see the right-hand side of Figure 3.
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The intuition ‘! increases likelihood’ is represented in the relational semantics
by fibrewise containment. As an exercise the reader may like to envisage the
semantics of the predeterministic program abort 1

8
⊕ (x := 0 2

7
⊕ x := 1) in

Figure 3 and thereby to see that it refines abort 1
2
⊕ x := 1 . A more interesting

exercise is to invisage the semantics of the nondeterministic program

abort 1
6
⊕ (x := 0 2

5
⊕ x := 1) � abort 1

6
⊕ (x := 0 1

5
⊕ x := 1) ,

again a refinement.
The set of subdistributions representing a fibre of a pGCL program is an !-

upclosed, convex hull of a (nonempty) finite set of extreme points. For pGCL
computations more generally, the sets are just convex, !-upclosed subsets. (And
if state space X is infinite then they must also be assumed to be (topologically)
closed in the product space [0, 1]X .)

The semantic model we have sketched is called relational, although the rea-
son can scarcely be apparent since we have not touched upon the semantics of
sequential composition. For that, each initial state is identified with its point
mass and linearity used to extend our state-wise definitions to distributions; for
details we refer to [MM05].

3 Reversing Probabilism

A stimulating paper by Stoddart et al [SZL06] in this proceedings, surveys re-
versible computations in models ranging from the original physical model of
Landauer [L61] to Zuliani’s treatment [Z01] in pGCL and to their own treat-
ment in UTP designs. The context is one in which computation consisting of
reversible steps may be expected to be more efficient. But in order to render
a computation reversible it is sometimes necessary to augment it with extra
state whose sole purpose is to facilitate reversibility. Indeed that is the approach
taken previously by Zuliani in pGCL, motivated by the concerns of quantum
computation.

Here we consider an alternative interpretation of reversibility by asking the
much stricter question: given state space X , which computations in pGCL(X ) are
reversible in pGCL(X ) in the sense that they have a right reverse in pGCL(X )
(with respect to sequential composition)? Thus no state may be added in order
to facilitate reversibility.

Definition (strict reversibility). A computation A over state space X is
strictly reversible iff there is a computation B also with state space X for which
A o

9 B = skip .

Although that definition is general, our interest here is primarily in the spaces
GCL(X ) and pGCL(X ).

Examples of strictly reversible computations are well known. For example
over the state space of integers, addition is reversible:

x := x + n has reverse x := x − n
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and that fact may be used to interchange two variables in three assignments but
without the luxury of a third temporary variable. However by using additive
inverse it fails on bounded subsets in particular implementations (when addition
fails to have a total inverse). An example which works both in theory and practice
takes for state space the Booleans and, for operation, exclusive-or. Operation

x := x ⊕ y

is actually self inverse (and the interchanging of two variables can be achieved
with three assignment statements having identical expressions).

Those examples are typical in the sense that an assignment x := e is reversible
over the same state space iff its expression e is bijective as a function of state x
in the usual sense: e(x ) = e(x ′) implies x = x ′ .

Lemma (reversibility in GCL). The space of strictly reversible computa-
tions in GCL(X ) contains bijective assignments and is closed under sequential
composition but not (in general) under conditional, nondeterminism or iteration.

Proof. The claim for total bijective assignments follows from the fact that the
inverse assignment (well defined by assumption) acts as a right inverse. The
claim for composition is routinely proved: assuming that A and B have right
inverses A′ and B ′ respectively (we need make no claim about their uniqueness),
A o

9 B has right inverse B ′ o
9 A′ since

(A o
9 B) o

9 (B ′ o
9 A′)

= o
9 associative and B ′ a right inverse for B

A o
9 skip o

9 A′

= associativity, skip the identity for o
9 and A′ a right inverse for A

skip .

Although both skip and negation over Booleans are reversible (indeed both
are self inverse) the conditional (x := ¬x ) � x � skip is irreversible, being
equivalent to x := false . Similarly for the iteration: do x → ¬x od . For nonde-
terminism, we reason that were the computation skip � (x := ¬x ) , constructed
from reversible arguments, to have a right inverse A′ then

(skip � (x := ¬x )) o
9 A′ = skip

⇔ GCL law

(skip o
9 A′) � ((x := ¬x ) o

9 A′) = skip
⇔
A′ � ((x := ¬x ) o

9 A′) = skip
⇒ skip deterministic

A′ = skip

which would be inconsistent with the definition of A′ . �
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Theorem (reversibility for GCL). A GCL computation is strictly reversible
iff it is a bijective assignment.

Proof. By the lemma it remains to show that a strictly reversible computation
in GCL(X ) is a bijective assignment. Let A be a strictly reversible computation
with right inverse A′ ∈ GCL(X ) and let x0 be an arbitrary initial state. Then,
presaging the fibre notation of section 4,

skip • x0
= definition of A′

(A o
9 A′) • x0

= fibre-distribution law

(A • x0) o
9 A′

We infer not only that A cannot abort from x0 (since abort is a left zero for
sequential composition) but, following the reasoning of the lemma, that it is
deterministic at x0 . So we continue to reason

(A • x0) o
9 A′

= reasoning above

(x := e) • x0 o
9 A′ .

=

(x := e) • x0 o
9 A′ • e(x0) .

Thus from initial state e(x0) the computation A′ terminates in final state x0 .
Since x0 was arbitrary, expression e is a bijective function of state, as required. �

Before considering pGCL we observe that if A and B are deterministic compu-
tations then so too is the probabilistic choice A p⊕ B , in spite of its commonly
(and perfectly reasonably, outside the refinement calculus) being called a nonde-
terministic choice (particularly by quantum physicists). Of course in our terms,
to be deterministic is to be maximal with respect to the refinement ordering !
(see [MM05], section 8.3).

We next observe that strictly reversible computations in pGCL are not closed
under probabilism.

Lemma (reversibility in pGCL). The space of strictly reversible computa-
tions in pGCL(X ) is not (in general) closed under probabilism.

Proof. Consider the state space of Booleans. Were the computation skip p⊕
(x := ¬x ) , constructed from reversible arguments, to have a right inverse A′ ∈
pGCL(B) then

(skip p⊕ (x := ¬x )) o
9 A′ = skip

⇔
A′

p⊕ ((x := ¬x ) o
9 A′) = skip
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⇒ skip an extreme point

A′ = (x := ¬x ) o
9 A′ = skip

which would be inconsistent with the definition of A′ . �

The main result of this section is therefore that strict reversibility in pGCL re-
duces to that in GCL .

Theorem (reversibility for pGCL). An element of pGCL(X ) is strictly re-
versible iff it is a bijective assignment.

It might be thought that a richer notion of reversibility for pGCL might be
obtained by replacing the requirement ‘a right inverse composes to give skip’
by the far weaker but more probabilistic requirement ‘a right inverse composes
to give the uniform distribution’ (over finite state space). However that is too
weak: any terminating computation would be reversible in that sense, with right
inverse the assignment having uniform distribution (i.e. each member of state
space is equally likely to be assigned).

Extending computations to include miracles and angelic choice adds nothing
to the theory. Indeed a computation miraculous at some initial state has no right
inverse restoring the initial state, in view of the law: magic o

9 A = magic ; and
reversibility is readily shown not to be closed under angelic choice.

4 Possible Failure is Failure

In this section we explore the model in which a positive probability of failure is
deemed equivalent to failure.

4.1 (N , �)

Definition (N ). The space of probabilistic computations that abort if they
have a positive probability of aborting is defined fibre-wise: for each initial state
x0 if the fibre A • x0 has a positive probability of aborting then it aborts certainly.

N (X ) =̂ {A : pGCL(X ) | ∀ x0 : X · ∀ p : (0, 1) · ∀B : pGCL(X ) ·
(A • x0 = (abort p⊕ B) • x0)⇒ B • x0 = abort }

The ordering of (N (X ),!) is as for (pGCL(X ),!) .

4.2 Relational Semantics of N
The advantage of presenting the definition of N fibre-wise is that its relational
semantics is readily appreciated. For any A : N (X ) and any initial state x0 : X ,
the set of distributions of the fibre A • x0 is either the whole region

Δ =̂ {f : X → [0, 1] |
∑

f ≤ 1}
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Fig. 4. The relational semantics of two computations in N

(for example at any initial state other than x0) or a subset of its face

{f : X → [0, 1] |
∑

f = 1} .

The relationally healthy subsets are thus the nonempty, convex, closed subsets
of the region which, if they contain a subdistribution that sums to less than 1,
equal the whole region Δ .

For example the nondeterministic choice

(x := 0 2
3
⊕ x := 1) � (x := 0 1

3
⊕ x := 1)

=
�{(x := 0 p⊕ x := 1) | 1

3 ≤ p ≤ 2
3}

is depicted on the left-hand side of Figure 4 and is just as it would be in pGCL.
On the other hand the program (abort 1

2
⊕ skip) is represented from each initial

state by the set Δ of all subdistributions; it is the entire triangle on the right-
hand side of Figure 4: the upclosure of the subdistribution 0.

We thus see, in case it was not already obvious either semantically or alge-
braically, that from an initial state x0 a pGCL computation is converted to a
N computation by the closure operation which on a set of subdistributions F is
defined

Δ � ∃ f :F · Σf < 1 � F .

In other words, if the set F meets the interior of Δ then it equals all of Δ, but
otherwise it remains unchanged on the face of Δ . We formalise the adjoint, an
embedding, of that operation and reclaim the closure operation as the relational
semantics of its Galois projection.

4.3 Laws

As usual, the advantage of a Galois connection between a new space and a well-
studied space is that it may be used to infer new laws from old.

Theorem (Galois connection). The space (N ,!) is a complete subspace of
(pGCL,!), interposed between (GCL,!) and (pGCL,!) by Galois connections
whose embeddings are the natural insertions

ε0 : (GCL,!)→ (N ,!) , ε0.A =̂ A
ε1 : (N ,!)→ (pGCL,!) , ε1.B =̂ B .
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Recall that if (X ,≤X ) and (Y ,≤Y ) are say complete lattices then a function
φ : X → Y is universally (∨X ,∨Y )-junctive if for any subset E of X

φ. ∨X E = ∨Y {φ.e | e ∈ E} .

Similarly, or dually, for universally (∧X ,∧Y )-junctivity. If the spaces are com-
plete then the embedding in a Galois connection is universally (∨,∨)-junctive
and the projection is universally (∧,∧)-junctive. With little more work we have:

Corollary (junctivity). The embeddings ε0 and ε1 are both injective, univer-
sally (�,�)-junctive, universally (%,%)-junctive and preserve o

9 .
The projections ν = π1 and π0 are both surjective, universally (�,�)-junctive,
preserve o

9 and ν is weakening: ν.A ! A .

In spite of that corollary, ν is not universally %-junctive. Indeed

ν. % {abort p⊕ skip | 0 < p ≤ 1}
=

ν.skip


abort
=

%{ν.(abort p⊕ skip) | 0 < p ≤ 1} ,

although ν.abort = abort .

Corollary (laws for N ). For A,B :N , predicate b on state space and proba-
bility p ,

ν.skip = skip

ν.abort = abort
ν.(x := e) = (x := e � def .e � abort )
ν.(A o

9 B) = (ν.A) o
9 (νB)

ν.(A � B) = (ν.A) � (ν.B)
ν.(A � b � B) = ν.A � b � ν.B

ν.(A p⊕ B) = (ν.A p⊕ ν.B)

�

⎛
⎝ν.A = abort ∨ ν.B = abort
⇒
p = 0 ∨ p = 1

⎞
⎠ �

abort .

4.4 Characterisation

Although the definition given of N was convenient for visualising its relational
semantics, it has a simpler fibre-free characterisation.
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Theorem (N characterisation). A ∈ N iff

∀ p : (0, 1) · ∀B : N · (A = (abort p⊕ B)) ⇒ B = abort .

Proof. The replacement of B :pGCL(X ) by B :N is justified simply

abort p⊕ (abort q⊕ B)
= ‘associativity’ law

(abort r⊕ abort) s⊕ B
= idempotence; s ∈ (0, 1) since p, q ∈ (0, 1)

abort s⊕ B .

For the equivalence we reason in each direction.
(�) Substitution gives

∀ x0 : X · B • x0 = abort

and so the result follows by the normal-form theorem.
(�) We reason using the fibre-distribution lemma: for any state x0 ,

A • x0 = (abort p⊕ B) • x0
⇒ fibre-distribution lemma

A • x0 = (abort • x0) p⊕ (B • x0)
⇒ fibre-distribution lemma

A • x0 = abort p⊕ (B • x0)
⇒ hypothesis applied to A • x0 and B • x0

B • x0 = abort

which completes the proof. �

4.5 Domain and Range

The notion of ‘terminating set’ makes sense for GCL computations. For if a
computation may nondeterministically terminate or abort from some given state
then, as discussed in the Introduction, the computation actually aborts. Thus
there is no conflict deciding whether the state should be in the ‘terminating set’
of the computation or not. But for pGCL computations the situation is more
complex, since from a given state a computation may abort with some positive
probability and terminate with some positive probability; should that state lie
in the ‘terminating set’ or not?

For the space N those difficulties disappear, and the notions of ‘terminat-
ing set’ and ‘range’ make sense as subsets of state space (rather than
distributionally).

Definition (N ). For a computation A :N , domain of A, pre.A , consists of all
states x0 from which A has no (positive) chance of aborting:

pre.A =̂ {x0 :X | A • x0 �= abort } .
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The range of A , erp.A , consists of all states which have a (positive) chance of
occurring from an execution begun in pre.A:

erp.A =̂ {x1 :X | ∃ x0 : pre.A · ∃ p > 0 · ∃B : N ·
A • x0 ! (x := x1 p⊕ B) • x0} .

We observe that the definition of N ensures those concepts are well defined,
but do not pursue those ideas here.

5 Quantum Computation

In this section we propose to substantiate the claim that the various kinds of
computation proposed by the quantum model, sequential and distributed, can be
captured by probabilistic formal methods. We refer to the thorough text [NC00]
for a general exposition of quantum computation.

Sequential quantum computation corresponds to computation, with the usual
control structures, executed on a device bound by the laws of quantum mechan-
ics: possessing quantum state operated on by unitary updates. In principle that
enables an exponential amount of standard work to be done in one quantum
operation, as all 2n states of a standard register are updated. The problem in
designing a quantum algorithm is utilising that work in the finalisation (or obser-
vation) operation. Perhaps that is why there are so few quantum algorithms, and
not many that achieve an exponential speedup over the best standard algorithm
for the same problem.

Distributed quantum computation, so far largely cryptographic as if to make
amends for the effect of Shor’s quantum factorisation algorithm on RSA, consists
of processes interacting again subject to the quantum model. But the quantum
features relevant to this paradigm of computation turn out to be a little different.
Communication must ensure that if an arbitrary quantum state is output then
no copy of it remains; for that would violate unitarity of the output operation.
It is quite possible to achieve such output in a process-algebraic model using
quantum teleportation, but here we choose to model distributed computations
and sequential computations in pGCL.

5.1 Sequential Quantum Computation

Figure 5 depicts the quantum state corresponding to a bit—a qubit. It is a
complex number of length 1 (though we show only the first quadrant). The qubit
represents the bit 0 by being (purely) real: by 0̂; it represents the bit 1 by being
purely imaginary: by 1̂. But it is initialised, for the purpose of (almost every)
quantum computation, to be midway between those two (see the left-hand side
of Figure 5): by (0̂ + 1̂)/

√
2. Each (unitary) quantum evolution step moves that

state vector around the unit circle in the complex plane. Finalisation returns
a (standard) bit: it is 0 with probability equal to the length of the projection
of the state vector onto the horizontal axis and it is 1 with the complementary
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Fig. 5. A quantum bit, its initialisation, evolution and finalisation

probability, which equals the length of the state vector projected onto the vertical
axis. Those two numbers sum to 1 since the state vector stays on the unit circle
(and by Pythagorus).

Thus initialisation places the qubit in a state which, were it to be finalised im-
mediately, would result in either 0 or 1 with equal likelihood. Quantum state can
be revealed only by finalisation. But finalisation with respect to any orthonor-
mal basis is possible, in which case the outcome is determined with probability
given by the projections onto that basis. So whilst Figure 5 considers only the
standard basis, Figure 7 shows also the standard basis rotated by 45 degrees.

But finalisation is a little more involved than we have admitted so far: it returns
a bit as well as leaving the qubit in a corresponding state. We follow standard
practice and acknowledge von Neumann’s contribution to quantum mechanics by
referring to the former as the eigenvalue and the latter as the eigenvector.

In summary, for a single quantum bit, we introduce q.B for the space of qubits
and χ for a typical element:

quantum state χ : q.B

initialisation χ := 2−
1
2 (0̂ + 1̂)

evolution χ := U (χ) where U is unitary

finalisation Fin[ξ,η] (χ, x ) =̂ χ , x := ξ p⊕ η , 0 p⊕ 1

where p = | 〈χ, ξ〉 |2 .

We have used multiple assignment to describe finalisation and will return
to that shortly. For now we observe that z := a p⊕ b is shorthand for (z :=
a) p⊕ (z := b) , designed specifically to enable us to write probabilistic multiple
assignments as readily as standard multiple assignments.

The definition of quantum state, which we need in the next section for registers
larger than a single bit, is a simple extension of the qubit case. For a type T its
quantum analogue is

q.T =̂ {χ : T → C |
∑
{|χ(x ) |2 | x : T} = 1} .

The only fact we need about q concerns its modularity: the quantum ana-
logue of a direct product is the tensor product of the quantum analogues of the
components:

q.(T×U) = (q.T) ⊗ (q.U) .
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Finalisation is a procedure with value-result parameter χ (the eigenvector)
and result parameter x (the eigenvalue) which depends on the orthonormal ba-
sis [ξ, η] ; there p = | 〈χ, ξ〉 | 2 is the length of the projection of state vector χ
onto ξ and p = | 〈χ, η〉 |2 is the length of the projection of χ onto η . As a proce-
dure, finalisation is a multiple probabilistic assignment. If the orthonormal basis
is standard, we omit it and write just Fin(χ, x ) . Finalisation of χ : q.Bn with
respect to a given basis results in χ equalling each element of the basis with prob-
ability equal to the length of χ projected onto that element (and corresponding
bitstring for x ).

Thus in a quantum computation, probabilism arises only in finalisation (al-
though a uniform choice is required in the standard part of Shor’s algorithm).
In physics the resulting probabilistic state is called a mixed state. Nondeter-
minism arises from errors that give rise to a range of probabilities. As we have
already seen from the convexity principle, that is readily expressed in the pGCL
programming language

�{A p⊕ B | a ≤ p ≤ b} = (A a⊕ B) � (A b⊕ B) .

5.2 Quantum Programming: Grover’s Algorithm

The case has been made elsewhere [SZ00] that sequential quantum computa-
tion can be incorporated into the approach of formal methods and as a result
raised from the level of ‘gate chasing’ in hardware design to that expected in
contemporary Computer Science of ‘specified, verified design’. In fact [SZ00] pro-
vides a derivation in the refinement calculus of the Deutsch-Jozsa algorithm from
its nondeterministic specification. Together with verified compilation [Z05], the
claim is made that the result is not mere quantum computation, but quantum
programming.

Here we provide a taste by specifying and describing Grover’s point search
algorithm [G96] as a quantum program. The problem it solves is:

given an array f of 2n bits containing a single 1, locate it.

(More sophisticated versions deal with multiple 1s, but this suffices to make
our point.) However it is not always sure to give the correct result and so its
specification is formalised by saying that the program always terminates with
some value for the index i , and with probability at least λ it returns the index
i at which f is high.

var i : 0 . . 2n ·
i := f ∼.1 ≥λ⊕ i :∈ 0 . . 2n

rav

There f ∼ denotes the converse of array f considered as a function, so that
i := f ∼(1) assigns to i the unique value at which f is high; and i :∈ E denotes and
arbitrary assignment to i from E . The value λ is n-dependent and is also related
to the number N of iterations performed by the quantum implementation; we
overlook the details here.
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In describing Grover’s algorithm in pGCL we use a register Bn of n bits. Its
quantum version, q.Bn (= q.(Bn )) , extends the case n = 1 by consisting of the
unit sphere in n-dimensional complex space; the state vector χ is thus a point on
that sphere which finalisation projects, in this case, to one of the standard axes.
The eigenvalue x returned by finalisation is the binary representation of the index
i which is obtained from x by the ‘decoding’ function num. Initialisation of χ is
written In(χ) and puts χ, as for the qubit case, in a state which if finalised would
lead with equal probability to each element of the register Bn . As expected, the
program consists of initialisation, unitary evolution and finalisation.

var χ : q.Bn , x : Bn , i : [0, 2n) ·
In(χ) o

9

do N times→
χ := Tf .χ o

9

χ := M .χ
od o

9

Fin (χ, x ) o
9

i := num(x )
rav

Each evolution steps involves two transformations. The first, Tf : q.Bn → q.Bn ,
acts coordinate-wise on χ by inverting in the origin just the coordinate corre-
sponding to the index i at which f is high

Tf .i =̂ (−χ.i) � f .i � χ.i .

The second, M : q.Bn → q.Bn , inverts each coordinate of χ about the average
value of χ’s coordinates: χ−χ = χ−Mχ , where χ denotes the average of χ. Thus

M .χ.i =̂ 2 (2−n
∑
{χ.j | j ∈ Bn})− χ.i .

Each transformation is readily seen to be unitary. A correctness proof of
Grover’s algorithm in the expectation-transformer semantics of pGCL appears
in [BH99]. We expect that it is possible to give an algebraic derivation, starting
from a non-quantum but probabilistic algorithm and using refinement steps (as
in the derivation of the Deutsch-Josza algorithm in [SZ00]). For interest we
observe that the asymptotic efficiency of Grover’s algorithm is Θ(

√
n) ; and with

n = 27 , the error bound λ is about 99.6% .
But let us consider a distributed quantum algorithm.

5.3 Distributed Quantum Computation

Initialisation, (unitary) evolution and finalisation in the sequential case ensure
that a quantum program thus expressed conforms to the tenets of the quantum
model. But in the case of a distributed algorithm just a little more care is
required. Unitary evolution forbad something that in the distributed case might
be taken for granted: the copying and output of a quantum state. Unfortunately
it has long been known thatcopying an arbitrary quantum state is inconsistent
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with quantum theory [WZ82]. The proof is trivial but relies on the putative
cloning operation acting on the quantum version of product space (one space for
the value before and one space for the copied value after) which, by the previous
law for q , is a tensor product.

Theorem (no-cloning). An arbitrary unknown quantum state cannot be
copied without alteration.

Proof. Were a cloning operation T to exist it would be a unitary transformation
(hence linear) on H ⊗H . But

T .(x ⊗ 0) + T .(y ⊗ 0)
=

x ⊗ x + y ⊗ y
�=
x ⊗ x + x ⊗ y + y ⊗ x + y ⊗ y
=

(x + y) ⊗ (x + y)
=

T .((x + y)⊗ 0) . �

5.4 Quantum Key Distribution

The distributed quantum algorithm we consider is due to Bennett and Brassard
[BB84] and enables, with reasonable likelihood, agents Alice A and Bob B to
share a secure key. The context is this.

Since Shor’s algorithm makes factorisation feasible, albeit on a quantum com-
puter, public-key encryption using RSA becomes less secure than originally an-
ticipated. So the old technique of a shared secure (i.e. private) key between pairs
of agents regains importance. Fortuitously quantum computation provides a way
to establish such a key; as someone has said: ‘what the quantum model takes
with one hand it returns with the other’.

The idea of the algorithm is that A and B are in touch by two different kinds
of channel: a quantum channel and a standard channel (Figure 6). Eavesdropper
E has access to both, and to the protocol employed by A and B . But, as we
have seen, in the quantum model she is able to determine its quantum state
only by finalisation: no copying of the state is possible (though of course she can
perform a unitary operation on it in an attempt to confound A and B ; but that
provides her with no information about the state).

Rather than communicating bits, A and B communicate bases. To describe
their protocol, we need a little more notation.

5.5 Conjugate Bases and Encoding

On a quantum channel, A sends a qubit to B initialised using one of two or-
thonormal bases (but see [BB92] for a one-basis variant and [G99], Section 6.2,
for a comparison and background discussion). B guesses which basis was used.
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Fig. 6. Alice A and Bob B communicate on quantum and standard channels in the
presence of an eavesdropper E in an attempt to gain a secure key
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Fig. 7. Conjugate bases: the standard vertical-horizontal basis vh and its forty-five-
degree rotation ff . Bit b encoded with respect to basis m is written b � m.

The two bases are as in Figure 7. The first we have already seen in Figure 5:
the standard basis is now denoted vh . The second, ff , consists of vh rotated by
45 degrees anticlockwise. The two bases are chosen to have the property, called
conjugacy, that if either vector of one basis is finalised with respect to the other
basis then the two outcomes, 0 and 1, are equally likely. That property is evident
from Figure 7.

For the set of bases we write M = {vh,ff } and we record the fact that each
basis is involute (or conjugate, literally) to the other: vh∗ = ff and ff ∗ = vh .

Before, we wrote b̂ for the encoding of bit b with respect to the basis vh .
Now that we have two bases we must be a little more discriminating. So for the
encoding of bit b with respect to basis m we write b)m . The quantum encoding
function is thus:

) : B×M→ qB

0) vh = 0̂
1) vh = 1̂
0) ff = 2−

1
2 (0̂ + 1̂)

1) ff = 2−
1
2 (0̂− 1̂) .

Quantum finalisation acts as a decoding function,

* : qB ×M→ B

χ*m = Fin [m] (x ) ,
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(assuming the finalisation procedure Fin returns just the eigenvalue x ) inverting
) by conjugacy:

(b )m)* l =
{

b if m = l
0 1

2
⊕ 1 if m = l∗.

5.6 BB84

A sends qubits to B , each encoded with one of the two bases, on the quantum
channel. In bursts, eavesdropper E either finalises with respect to one of the
bases, inflicts some unitary evolution on the quantum state of the channel, or is
quiescent. There is also some chance of qubits being corrupted in the channel.
As the qubits reach B he finalises them with respect to his choices of basis.

If E finalises a qubit with respect to the same basis that A used to encode
her bit (probability 1

2 ), then she observes the bit A sent and leaves the quantum
state unaltered for B to observe. But if she finalises with respect to the conjugate
of the basis A used, E is equally likely to observe either 0 or 1, in which case
she leaves the channel in a state from which B is equally likely to observe 0 or
1 regardless of whether he uses the same basis as A or not.

Thus if A and B choose the same basis and B observes a bit other than the
one A encoded, then they know that E has interfered. But if they choose the
same basis and B observes the same bit that A encoded then they can infer
E has not interfered only with probability 1

4 (in the complementary case, with
probability 1

2 E chose the same basis as A and so observed the same bit; with
probability 1

4×1
4 she chose the wrong basis and perchance observed the right

bit). So in the next stage of the protocol, A and B confer to compare bases and
bits.

B uses a standard channel to tell A the sequence of bases he used in finalisation
and she replies confirming which were the same as hers. Of those, B chooses a
subsequence and tells A, again on a standard channel, which bits he observed;
and again she replies, confirming which were correct. All this E can observe but
not distort. If an acceptable proportion of bits in the subsequence are correct,
taking into account corruption and bursty intrusion by E , then A and B assume
that E was quiescent and that the remaining bits, those not in the declared
subsequence, are secure. The probability with which they are deluded is 3

4 for
each bit. (In fact there is a method for amplifying the security from the remaining
bits; see [BBR88].) An example run is shown in Figure 8.

5.7 Simplification

We consider a simplification of just one iteration of that algorithm (strange as
it might seem without the explanation above). To model the distributed algo-
rithm in pGCL (rather than probabilistic process algebra) we need to ‘partition’
variables amongst agents. We do so by determining which variables each agent
can write and can read (although a qubit can be ‘read’ only by finalisation); but
first the meaning of the variables.
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A’s bits a 0 1 1 0 1 1 0 0 1 0 1 1
A’s bases k ff vh ff vh vh vh vh vh ff ff vh ff
A’s qubits a � k 45 90 135 0 90 90 0 0 135 45 90 135
B ’s bases κ vh ff ff vh vh ff ff vh ff vh ff ff
B ’s observed bits α 1 1 1 0 0 0 1 1 1
B reports κ’s vh ff vh ff ff vh vh ff ff
A confirms κ’s ¬c c c ¬c ¬c c ¬c ¬c c
potentially secure bits 1 1 0 1
B reveals some α’s 1
A confirms d
shared secure bits 1 0 1

Fig. 8. A tiny sequence of communications between A and B , demonstrating their
choice of bases, publicly declared bases and bits, and the remaining secure bits. Gaps
correspond to corrupted communications; Booleans c and d if high mean ‘equal’.

A chooses bit a : B and basis k : M and encodes the former using the latter to
produce qubit χ . Then (we choose her to eavesdrop) E chooses basis e : M and
finalises χ with respect to it to observe bit x . B chooses basis κ and finalises χ
to observe bit b . A reads κ and b and writes Boolean d saying whether or not
both coincide with her choices. If not, the run is aborted. But if so, then A and
B both believe their shared bit b (= a) to be secure. (In this one-loop version
of the protocol we choose not to distinguish the basis and bit’s being concealed
from their being publicised in the way depicted in Figure 8.)

With that mapping from variables to reality we see that A writes to variables
{a, k , χ, d} and reads from variables {a, k , b, κ} ; B writes {κ, , b} and reads
{d , χ} ; and E writes just {χ, x} but reads {χ, κ, α, d} .

The specification concerns the variables x , b, d : B : the bit E observes, the bit
B observes, and whether A and B chose the same bit and basis. Firstly, it ensures
that the shared bit b is equally likely to be 0 or 1 (otherwise E would have an
advantage in determining it). Secondly, since d is high iff A and B jointly believe
b to be secure (when in fact E has finalised the state of the quantum channel and
so with probability 3

4 has obtained x equal to a), the specification must ensure
that the probability of (x = a)∧ d (which equals the probability of (x = b)∧ d)
is bounded away from 1. For then the probability that A and B are deluded
can be made realistically small by (independent) iteration. An acceptable value
would be 1

2 ; in fact by the above the algorithm achieves 3
4× 1

2 = 3
8 .

var x , b, d : B ·
b = 0 1

2
⊕ 1

(b = x ) ∧ d = 0 ≥ 3
8
⊕ 1

rav

The implementation uses all the extra variables discussed above to achieve
that specification
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var a, b, x , d : B, k , e, κ : M, χ : q.B ·
a , k := 0 1

2
⊕ 1 , vh 1

2
⊕ ff o

9

χ := a ) k o
9

e :∈M o
9

Fin[e](χ, x ) o
9

κ := vh 1
2
⊕ ff o

9

Fin[κ](χ, b) o
9

d := ((k = κ) ∧ (a = b)) o
9

skip � d � abort
rav

5.8 Challenge

We have demonstrated a way in which a distributed quantum algorithm can be
specified and described in pGCL. In one sense that suffices to show that such
computations are unified within the Formal Methods framework. But far more
satisfactory would be an incremental, step-wise, derivation of the implementation
from its specification. Presumably the first step would provide a probabilistic
non-quantum algorithm.

We are experimenting with probabilistic coin tossing [H92] (the structure un-
derlying the simplification described above) and the use of data refinement to
derive a quantum implementation. The aim is to convert an abstract, proba-
bilistic, algorithm into a concrete, quantum, one step-by-step using a simulation
between the two computations.

References

[BB84] C. H.Bennett and G.Brassard. Quantum cryptography: public key distribu-
tion and coin tossing. Proc. IEEE Conference on Computers, Systems and
Signal processing, Bangalore, pp. 175–179, 1984.

[BBR88] C. H.Bennett, G.Brassard and J.-M. Robert. Privacy amplification by public
discussion. SIAM Journal of Computing, 17(2):210–229, 1988.

[BB92] C. H.Bennett. Quantum cryptography using any two nonorthogonal states.
Physical Review Letters, 68(21):3121–3124, 1992.

[BH99] M. J. Butler and P.Hartel. Reasoning about Grover’s quantum search algo-
rithm using probabilistic wp. ACM Transactions on Programming Languages
and Systems, 21(3):417–430, 1999.

[G96] L.Grover. A fast quantum mechanical algorithm for database search. Pro-
ceedings of 28th ACM STOC, 212–219, 1996.

[G99] J. Gruska. Quantum Computing. McGraw-Hill International (UK),
Advanced Topics in Computer Science, 1999.

[H92] D.Harel. Algorithmics: The Spirit of Computing, second edition. Addison
Wesley, 1992.

[HSM97] He, Jifeng, K. Seidel and A.K.McIver. Probabilistic models for the guarded
command language. Science of Computer Programming, 28:171–192, 1997.

[H04] E.R.Hehner. Probabilistic predicative programming. Mathematics of Pro-
gram Construction, Stirling Scotland, LNCS 3125:169–185, Springer-Verlag,
2004.



Unifying Probability 199

[HH98] C. A.R.Hoare and He, Jifeng. Unifying Theories of Programming. Prentice
Hall, 1998.

[L61] R. Landauer. Irreversibility and heat generated in the computing process.
IBM Journal of Research and Development, 5, 1961.

[MM05] A.K.McIver and C.C. Morgan. Abstraction, Refinement and Proof for Prob-
abilistic Systems. Springer Monographs in Computer Science, 2005.

[NC00] M. A.Nielsen and I. L.Chuang. Quantum Computation and Quantum Infor-
mation. Cambridge University Press, 2000.

[SZ00] J. W. Sanders and P. Zuliani. Quantum Programming. Mathematics of
Program Construction, 2000, edited by J. N.Oliviera and R.Backhouse,
Springer-Verlag LNCS 1837:80–99, 2000.

[SZL06] W. J. Stoddart, F. Zeyda and R. Lynas. A design-based model of reversible
computation. This proceedings.

[WZ82] W.K.Wootters and W.H.Zurek. A single quantum cannot be cloned, Na-
ture, 299(5886):802–803, 1982.

[Z01] P. Zuliani. Logical reversibility. IBM Journal of Research and Development,
45(6):807–818, 2001.

[Z05] P. Zuliani. Compiling Quantum Programs. Acta Informatica, 41(7-8):
435–474, 2005.



Pointers and Records in the
Unifying Theories of Programming

Ana Cavalcanti1, Will Harwood2,∗
, and Jim Woodcock1

1 University of York
Department of Computer Science

York, UK
2 Citrix Systems (R & D) Ltd

Venture House, Cambourne Business Park
Cambourne, Cambs, UK

Abstract. We present a theory of pointers and records that provides a
representation for objects and sharing in languages like Java and C++.
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same memory location. We first define our theory as a restriction of the
general theory of relations, and, as a consequence, it does not distinguish
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towards the semantics of an object-oriented language that also integrates
constructs for specifying state-rich and concurrent systems.

Keywords: semantics, refinement, relations, object models.

1 Introduction

Interest in reasoning about pointer programs is not recent [3], and has been
renewed by the importance of sharing in object-oriented languages [1, 11]. Most
semantic models of pointers use indexes to represent memory locations or embed
a heap [8, 15]. Modern object-oriented languages, however, do not encourage or
directly support manipulation of the memory.

In this paper, we present a theory for pointers based on the model of entity
groups presented in [13] to formalise rules of a refinement calculus for Eiffel [10].
In that work, the complications of an explicit model of the memory are avoided;
instead, each entity (variable) is associated with the set of variables that share
its location (entity group). Using this model, the Eiffel semantics for object
creation, reference assignment, and call is formalised.

Our long-term goal is to provide a pointer semantics for an object-oriented
language for refinement that supports the development of state-rich, concurrent
programs. In particular, we are interested in the language OhCircus presented
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in [4]; it is a combination of Z [20] and CSP [16], with object-oriented constructs
in the style of Java, including inheritance, subtyping, and null values. Since
OhCircus combines constructs from several programming theories, the UTP is a
very appropriate choice for its semantic model.

Following the UTP style, we are concentrating on the individual aspects of the
OhCircus semantics separately. The theory that we present here provides a refer-
ence semantics for a language with variables whose values are objects: recursive
records. It will be integrated to the copy semantics of OhCircus.

The program in Figure 1 illustrates the sort of concepts in which we are
interested. This program compacts a list l , by sharing references to equal values.
The type List of l can be defined as: List ::= (label : Z; next : List). This is
a recursive labelled record with two fields: label and next . The assignments in
Figure 1 are pointer assignments, and the equalities are value equalities. In this
example we use a reasonably standard programming notation involving while
and if commands, but in our theory we use the notation adopted in the UTP.

var p • p := l ;
while p �= null do

var q • q := p.next ;
while q �= null do

if q .label = p.label then q .label := p.label fi;
q := q .next

od;
p := p.next

od

Fig. 1. Compacting a list l

We assume that all values, including primitive values, have a location; vari-
ables are names of locations. We are not interested in the particular locations of
variables and values, but on whether two (or more) variables are different names
for the same location or not. A healthiness condition guarantees that variables
that denote the same location have the same value.

In the next section we present our theory: its alphabet and its healthiness
conditions. Section 3 revisits the semantics of assignment and variable blocks,
and establishes the closedness of our theory. In Section 4 we explore the link
to the theory of designs; the combined theory supports reasoning about total
correctness of pointer programs. Finally, in Section 5 we summarise our results,
and consider some related and future work.

2 Relational Pointer Theory

In our work, we consider recursive data types di defined by a set of recursive
equations of the form di = 〈〈f1 : d1, ...., fn : dn〉〉 | null or di = s , where s is
a simple set and the fj ’s are field names. We define the predicate field(f , di) to
mean that f is a field of the data type di . In our example, the definition of List
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is a shorthand for List = 〈〈label : Z ; next : List〉〉 | null . These recursive records
are enough to model object values in a language like Java.

As with the general theory of relations of the UTP, the alphabet of our the-
ory of pointer relations includes the programming variables and their dashed
counterparts. Their values, however, are elements of recursive data types.

If the value of a variable x is a record with a field called y, we can use the
name x .y to refer to the value of this field: the dot notation is a field selector.
If x .y is again a record, we can refer to its z field as x .y.z , and so on. We refer
to both simple names (of programming variables) and such compound names
formed using the field selector, as paths; the set Path contains all paths.

Our theory also includes two extra variables pg and pg ′; they are path
groups: sets of groups (sets) of paths. Two paths that share the same location
are in the same group. Path groups correspond to the entity groups in [13].

In the next section, we introduce additional notation related to paths. Later
on, in Section 2.2, we define the healthiness conditions of our theory.

2.1 Paths

Given an observational variable x , we use ′x to refer to its name. References to
x itself are interpreted to stand for the value of x , as usual in the UTP.

We use meta variables p and q to refer to paths; we use subscripts if we need
extra variables. Given a path p, its root is p itself, if p is a simple name, or ′x , if
it is of the form ′x .q. In this latter case, q is called the extension of p. We refer
to these as root(p) and ext(p). The extension of a variable is empty.

In general, for paths p and q, we call p.q an extension of p by q. The path p.q
is said to be a descendant of p. For any two paths p and q, we write p ≺ q when
p is a descendant of q. Given a set of paths π we define the set of its descendants
as follows.

desc(π) =̂ { p | ∃ q : π • p ≺ q }

We introduce two meta functions: θ and δ. The function θ is inspired by the
Z θ-notation. Given an alphabet A, and a path p, θA(p) gives the value of p, if
its root ′x is in A and p is an appropriate reference to a field of x .

θA(′x ) = x , provided ′x ∈ A

θA(p.f ) = v .f , provided θA(p) = v ∧ v ∈ di ∧ field(f , di)

We also introduce decorated versions of θ. For example θ′A is defined as follows.

θ′A(′x ) = x ′, provided ′x ∈ A

θA(p.f ) = v .f , provided θ′A(p) = v ∧ v ∈ di ∧ field(f , di)

Other decorations can also be used. The important point is that the domain
of θ is always a set of undecorated variable names, along with some of their
descendants, whether θ is decorated or not. If we decorate θ, however, these
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paths are associated to the value of the similarly decorated path. Of course, the
decoration of a path is reflected in its root; for example (x .y)′ = x ′.y.

The set δA,i(p) includes all paths for p with i extra field selectors. A path for
another path p is either p itself or a descendant of p, and, most importantly, it
has a value, as defined by θ.

δA,0(p) = { p }, provided p ∈ dom θ.

δA,n+1(p) = { q.f | q ∈ δA,n(p) ∧ θA(q) ∈ di ∧ field(f , di) }
In general, δA(x ) is the set of all paths for x .

δA(x ) =
⋃

i δA,i(x )

Given a set π of paths, Δ(π) is the set of paths for the paths in π.

ΔA(π) = { p | ∃ x : π • p ∈ δA(x ) }
In summary, the descendants of a variable x are all path names that can be
built using ′x as a root. The paths for x , on the other hand, are x itself, and all
descendants that can be meaningfully used to access a component of the record
value of x , if any. Both notions generalise to paths in general.

Generally, we will drop the alphabet subscript from the above functions when
they can be inferred from context.

2.2 Healthiness Conditions

We need healthiness conditions to establish the relationship between the values
of the variables and the path groups in pg and pg ′. First of all, we have a
healthiness condition HP1 to guarantee that the path group pg partitions all
paths of the variables of the program.

HP1 P = P ∧ pg partition Δ(varαP)

In the UTP, the set inαP includes all the undashed variables in the alphabet of
P . We define varαP = inαP \{ pg } to include all the undecorated programming
variables in the alphabet of P .

We use HP1 to name the function HP1(P) =̂ P ∧ pg partition Δ(varαP) as
well. The HP1-healthy relations are the fixed points of HP1. As usual in the
UTP, we adopt the same sort of convention in relation to the definitions of the
other healthiness conditions in the sequel.

The second property we require is that the path group is well structured, so
that if any group contains a pair of paths p1 and p2, then if these paths are
extended in the same way, there is a group containing both extensions.

HP2 P = P ∧ ∀ g1 : pg; p1, p2 : g1; p : Path | { p1.p, p2.p } ⊆ Δ(varαP) •
(∃ g2 : pg • { p1.p, p2.p } ⊆ g2)

This reflects the fact that if p1 and p2 are different names for the same location,
then accesses to their components are also accesses to the same location.
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Finally, all paths in the same group must have the same value.

HP3 P = P ∧ ∀ g : pg; p1, p2 : g • θvarαP p1 = θvarαP p2

We use the θ function to determine the values of the paths p1 and p2. The θ
function is partial: it is only defined for valid applications of the field selector
operator. For example, θ(x .f ) is not defined if the value of x is null . Therefore,
by requiring that p1 and p2 have the same image under θ, we not only require
that they have the same value, but also that they are valid paths.

The healthiness conditions HP1, HP2 and HP3 impose conditions on the input
path group pg; HP4, HP5, and HP6 below impose the same conditions on the
output path group pg ′.

HP4 P = P ∧ pg ′ partition Δ(varαP)

It is a consequence of HP4 that pg ′, in the same way as pg, includes only un-
decorated variable names. This is important to avoid the need to change the
definition of a sequence P ; Q to match the value of pg ′ defined by P to the
value of pg used by Q .

HP5 P = P ∧ ∀ g1 : pg ′; p1, p2 : g1; p : Path | { p1.p, p2.p } ⊆ Δ(varαP) •
(∃ g2 : pg ′ • { p1.p, p2.p } ⊆ g2)

HP6 P = P ∧ ∀ g : pg ′; p1, p2 : g • θ′αP p1 = θ′αP p2

In the definition of HP6, we use a decorated version of θ. The paths in pg ′ are
not decorated, but θ′ gives the values of the primed variables.

The set of healthiness conditions can be simplified by noting that conditions
HP3-6 can be replaced by the condition below.

HP7 P ; IIp = P

The program IIp is the HP1-3-healthy identity relation, which we denote by II r

to avoid confusion.

IIp =̂ HP1 ◦ HP2 ◦ HP3(II r )

The theorems below establish that the two sets of healthiness conditions are
indeed interchangeable.

Theorem 1. Every relation R that is HP1-3-healthy and HP7-healthy is also
HP4-6-healthy.

Theorem 2. Every relation R that is HP1-6-healthy is also HP7-healthy.

A yet more concise way of characterising the healthy pointer relations is justified
by the following theorem. It establishes that we can use just the healthiness
condition below.

HP8 P = IIp ; P ; IIp

Theorem 3. A pointer relation R is healthy if, and only if, it is HP8-healthy.
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This result is a consequence of the fact that our healthiness conditions are re-
strictions on the initial and after state of a relation, but not on the transitions
that they describe.

This also allows us to prove a further useful theorem.

Theorem 4. For any pointer relation P, HP8(P) is the weakest healthy pointer
relation characterised by P: P ! IIp ; P ; IIp, and for every healthy Q such that
P ! Q, we have IIp ; P ; IIp ! Q.

Proof

P ! Q monotonicity of sequence

⇒ IIp ; P ; IIp ! IIp ; Q ; IIp healthiness of Q
= IIp ; P ; IIp ! Q �

This justifies the specification of pointer relations by defining unhealthy relations
and using HP8 to make it healthy.

3 Programming Constructs

In this section, we revisit the semantics of (value) assignment already in the
UTP, and introduce a new form of assignment: pointer assignment. For each
form of assignment, there is a corresponding notion of equality.

3.1 Equality

Our two notions of equality are standard equality =p and pointer equality
== . Standard equality equates values and pointer equality equates storage

locations.
Value equality is defined in terms of the θ function.

p1 =p p2 =̂ θ(p1) = θ(p2)

The paths p1 and p2 are required to be valid, that is, in the domain of θ, and
have the same value.

Pointer equality is defined with respect to the path group which models
storage.

p1 ==pg p2 =̂ ∃ g : pg • { p1, p2 } ⊆ g

These two equalities reflect the same distinction found in Lisp, where EQUAL
compares values and EQ compares pointers. On the other hand, this is slightly
in contrast with Java, where == compare values, but the values of objects
are locations. In our language, every value has a location, and we assume that
literal values have fresh locations. To write the Java expression e1 == e2 in our
language, we have to determine the type(s) of e1 (and e2). If they have primitive
types, we write e1 = e2; if not, we keep the == .

In our theory, if either of x or y is a primed name, then x == y is going to
be false, whether the extra parameter is pg or pg ′. This is because, as already
mentioned, they only hold undashed names.
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3.2 Assignment

The first form of assignment p1 := p2 that we consider is that already available
in the UTP, which assigns the value of p2 to p1, and, consequently, to all other
paths in its group. The second is p1 :== p2, which makes p1 to become another
name for the location of p2; in our context, this assignment alters the storage
model by merging the path groups containing p1 and p2.

Both assignments are alphabetised; they take a set A of programming vari-
ables as a parameter.

α(p1 :=A p2) = α(p1 :=A p2) = A ∪ A′ ∪ { pg, pg ′ }

Alphabets are left implicit whenever convenient.

Value assignment. As already said, the value assignment p1 := p2 has the side
effect of altering the value of all paths that share the storage location of p1. As a
consequence, the value of all their descendants are also changed. No other paths
have their value changed.

In terms of memory usage, there are two issues. Firstly, if a component x .f
of x shares location with a path p, and we assign a new value p2 to x , then
x .f takes on a new value as well, that of p2.f , if this is well defined. Therefore,
x .f and p cease to share their location. This means that all the descendants of
x have to be eliminated from the path groups in which they are.

Secondly, a value assignment duplicates a value and potentially requires extra
storage. For example, the assignment x .f := y makes the value of x .f , and of
all the paths that share its location, to become that of y; the locations of x .f
and y, however, are not changed. Moreover, if the value of y is itself a record,
with a field g, then x .f .g and y.g have the same value, but different locations. If
the location x .f .g did not exist before, because, for example, x .f had value null
before the assignment, a new location is created.
We define this behavior by defining a general notion of assignment and then
making it healthy using HP8.

assignV(p1, p2,A) =̂
∀ q : group(p1, pg) • update(root(q), root(q)′, ext(q), p2) ∧
∀n : A | (¬ ∃ p : group(p1, pg) • n =n root(p)) • n ′ = n ∧
pg ′ = remove(pg, group(p1, pg))∪

{ q1 : Δ(p2); q2 : Path | q1 =n p2.q2 • { q3 : group(p1, pg) • q3.q2 } }

The function group(x , pg) selects the path group of pg that contains x .

group(x , pg) =̂ ι g : pg | x ∈ g

The ι expression ι o : S | p(o) gives a definite description of an object o of a set
S that satisfies a constraint p(o); it is defined only when o exists and is unique.
It is identical to the Z μ operator; we do not use μ to avoid confusion with the
least fixed point operator of the UTP.
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The first conjunct in the definition of assignV(p1, p2,A) defines the new value
of all the paths in the group of p1. For each of them, including p1 itself, we
change the value of the variable at its root. This is because, changing the value
of x .f really corresponds to changing the value of x : its f field takes on a new
value, and all the others keep the same value.

The operator update(x , y, p, q) defines the value of y as the result of updating
the value of x to change the value of its component x .p to be that of the path
q. All the other components of y have the same value of the corresponding
component of x .

update(x , y, p, q) =̂
∀ p1 : Δ(x ) • (p1 =n x .p ⇒ y.p =p q) ∧

((p1 �=n x .p ∧ ¬ (p1 ≺ x .p))⇒ y.ext(p1) =p p1)

To define update(x , y, p, q), we consider each of the descendant paths p1 of x .
For the descendant x .p, the corresponding value of y.p is that of q. For the other
descendants p1, if they are not descendants of x .p, the value of the corresponding
component of y is that of p1 itself, which is a component of x . If they are a
descendant of x .p, by defining y.p, we have already defined its value.

The equality operator =n compares paths for syntactic equality. In the
case of simple names, it compares the names of the variables, instead of their
values.

The second conjunct in the definition of assignV(p1, p2,A) defines the value
of the variables that are not affected by the assignment: those that are not
roots of paths in the group of p1. As already said, the value of the paths in
the group of p1 is defined by the update function. In doing so, we also deter-
mine the value of all the descendants of the roots of those paths, as explained
above.

The third conjunct in the definition of assignV(p1, p2,A) defines the value
of pg ′. The function remove(pg, π) defines the set of path groups obtained by
removing all descendants of the paths in π from the groups in pg. If a group of
pg contains only descendants of π, it becomes empty, and should be excluded.

remove(pg, π) =̂ { g : pg | ¬ g ⊆ desc(π) • g \ desc(π) }

The use of remove(pg, group(p1, pg)) accounts for the first issue discussed above
in relation to memory usage in the behaviour of the assignment p1 := p2; namely,
the sharing information about all the descendants of the assigned path changes.
The duplication of the assigned value is taken into account by requiring that pg ′

includes new path groups { q3 : group(p1, pg) • q3.q2 }, for each extension q2 of
the descendants of p2.

Finally, the definition of assignment is as follows.

p1 :=A p2 =̂ HP8(assignV (p1, p2,A))

An interesting observation is that we only need to compose IIp on the left of
assignV (p1, p2,A) to make it healthy.
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Theorem 5. p1 :=A p2 = IIp ; assignV (p1, p2,A).

This is because the path group pg ′ defined by assignV satisfies the requirements
of our healthiness conditions. What it does not enforce is that pg is suitable.

Pointer assignment. The second form of assignment, p1 :==A p2, makes p1 to
share the location of p2. As a consequence, the value of p1 is also changed to
that of p2. Moreover, by changing the location of p1 to that of p2, we implicitly
change the location of all descendants of p1, and their values. In our model,
we remove them all from their current path groups, and, for each well defined
descendant of p2, we insert a corresponding descendant of p1 in its group. We
use the same style of construction as for value assignment, using HP8 to ensure
healthiness.

p1 :==A p2 =̂ H8(p′
1 =p p2 ∧ (∀ p :

⋃
pg ′ | pg /∈ Δ(p1) • p′ =p p) ∧

pg ′ = add(p1, p2, purge(p1, pg)))

The first conjunct of this definition determines the new value of p1, and implicitly
that of all its descendants. It also establishes that the value of all other paths
are not changed.

The second conjunct of the above definition determines the new value of
pg. We use a strengthened remove operator to state that both p1 and all its
descendants need to be removed from the original path groups.

purge(p, pg) =̂ { g : pg | ¬ g ⊆ (desc(p) ∪ { p }) • g \ (desc(p) ∪ { p }) }
Next, we use a function add to define that p1 itself and its descendants need to
be inserted back into the corresponding groups of p2 and its descendants.

add(p1, p2, pg) =̂
{ g : pg • g ∪ { p : g; q : Path | p =n p2.q • p1.q } ∪ { p : g | p =n p2 • p1 } }

Again, our use of HP8 in the definition of p1 :==A p2 is required only to enforce
that assignments are only defined for healthy path groups pg.

3.3 Variable Blocks

The declaration of a variable requires its inclusion in the set of path groups: new
singleton groups containing the new variable and its descendants should be de-
fined. Also, ending the scope of a variable entails in removing it and its descen-
dants from the path groups. Therefore, we redefine var x and end x .

varA x =̂ HP8(∀n : A • n ′ =p n ∧ pg ′ = pg ∪ { p : Δ(′x ) • { p } })
The alphabet of the variable declaration includes the new variable.

α(varA x ) = A ∪ A′ ∪ { x ′ } ∪ { pg, pg ′ }
This is just as in the UTP definition for the alphabet of var, except for the extra
observational variables pg and pg ′.
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To define end x , we use the function purge introduced in the previous section.

endA x =̂ HP8(∀n : A • n ′ =p n ∧ pg ′ = purge(x , pg))

The alphabet definition is similar to that of var x .

α(endA x ) = A ∪ { x } ∪ A′ ∪ { pg, pg ′ }
The proof of laws is in our agenda for future work.

3.4 Closure Properties

In this section, we prove that the programming operators are closed. In other
words, when applied to healthy relations, they result in healthy relations.

Theorem 6. If the relations P and Q are healthy, then so is P ; Q.

Proof

IIp ; P ; Q ; IIp P and Q are healthy

= IIp ; IIp ; P ; IIp ; IIp ; Q ; IIp ; IIp IIp ; IIp = IIp

= P ; Q �

Theorem 7. If the relations P and Q are healthy, then so is P ∨ Q.

Proof

IIp ; (P ∨ Q); IIp property of sequence and ∨
= IIp ; P ; IIp ∨ IIp ; Q ; IIp P and Q are healthy

= P ∨ Q �

Theorem 8. If the relations P and Q are healthy, then so is P ∧ Q.

Proof

IIp ; (P ∧ Q); IIp property of IIp

= IIp ; P ; IIp ∧ IIp ; Q ; IIp P and Q are healthy

= P ∧ Q �

Theorem 9. If relations P and Q are healthy, then so is P � b � Q.

Proof

Essentially the same. �

The set of healthy pointer relations is a complete lattice, since it is the image of
monotonic and idempotent healthiness conditions [7].
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Theorem 10. If F is built out of conjunctions, disjunctions, and sequences
applied to healthy pointer relations, then

μp X • F (X ) = HP8(μX • F (X ))

where μp X • F (X ) is the least fixed point of F in the lattice of healthy pointer
relations.

Proof. Follows from the closure theorems above, and from the fact that HP8 is
a monotonic idempotent that semi-commutes with the programming construc-
tors [7]. �%

This result states that a recursion is a healthy pointer relation, if its body is
built out of pointer relations itself.

4 Pointer Designs

The theory of pointer relations does not distinguish between terminating and
non-terminating programs. This distinction is made in the UTP by defining de-
signs, a subclass of relations that satisfy two healthiness conditions (H1 and H2).
All design relations can be split into precondition/postcondition pairs, making
them similar to specification statements in the refinement calculus.

In this section, we combine the theories of designs and pointers, thereby pro-
viding a foundation for a theory of total correctness for pointer-based sequential
programs. First, we reproduce the definitions of the design theory that we need,
then we define a Galois connection between our theory and designs. Finally, we
introduce an extra healthiness condition of the combined theory.

4.1 Designs

The theory of designs include two extra boolean observational variables to record
the start and the termination of a program: ok and ok ′. The monotonic idem-
potents used to define the healthiness conditions for designs can be defined as
follows, where P is a relation with alphabet {ok , ok ′, v , v ′}.

H1(P) =̂ ok ⇒ P

H2(P) =̂ P ; J , where J =̂ (ok ⇒ ok ′) ∧ v ′ = v

The variable ok records the observation that the program has been started; the
variable ok ′ records the observation that the program terminated. If P is H1-
healthy, then it makes no restrictions on the final value of variables before it
starts. If P is H2-healthy, then termination must be a possible outcome from
every initial state. The composition of H1 and H2 is named H.

The above formulation of H2 is different from that in [7], but in [19], we prove
that it is equivalent.
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4.2 Pointer Relations and Designs

The theory of pointer relations is stronger than the theory of designs. This is
because on abortion, a design provides no guarantees; however, a pointer relation
still requires the properties of pg to hold. This seems to be compatible with the
reality of pointer programs: the information held in pg (and pg ′) is related to the
physical constraints over variables that share locations, and these constraints
are not suspended when the program aborts. In this case, the final values of the
variables are arbitrary, but those that share the same location will still have the
same value, for instance.

Therefore, to combine the theories of pointers and designs, we follow the ap-
proach used to combine the theory of reactive processes and designs. We take
HP8 as a link that maps a design to a pointer relation; the range of HP8 charac-
terises a subset of pointer relations: pointer designs. This is our proposed theory
for total correctness of pointer programs.

First of all, for insight, we consider HP8(¬ ok); this program is strictly
stronger than ¬ ok , which is the top of the lattice of designs. This property
prevents H1 from commuting exactly with HP8. In general, we have the follow-
ing result.

HP8 ◦ H1(P) H1

= HP8(ok ⇒ P) propositional calculus, HP8 disjunctive

= HP8(¬ ok) ∨ HP8(P) HP8(¬ ok) �= ¬ ok
�= ¬ ok ∨ HP8(P) H1

= H1 ◦ HP8(P) �

For this reason, the theory of pointer relations is disjoint from the theory of
designs: a pointer relation cannot be a design, and vice versa. Instead, there is
an approximate relationship between the two theories:

HP8 ◦ H(P) ! P

for pointer relation P . This relationship is a property of a Galois connection
that translates between the two theories. In particular, it allows us to embed the
theory of designs and its refinement calculus in the world of pointers.

Galois connection. Let S and T both be partial orders; let L be a function
from S to T; and let R be a function from T to S. The pair (L,R) is a Galois
connection if, for all X ∈ S and Y ∈ T

Y ! L(X ) iff R(Y ) ! X

L and R are known as the left and right adjoints, respectively.
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Our proof of the existence of a Galois connection relies on two simple lemmas
about our healthiness conditions and refinement. First, a lemma concerning H1.

Lemma 1 (H1-refinement). For any two relations P and Q with ok and ok ′

in their alphabets,

H1(P) ! H1(Q) iff H1(P) ! Q

Proof

H1(P) ! H1(Q) refinement

= [H1(Q)⇒ H1(P) ] H1

= [ (ok ⇒ Q)⇒ (ok ⇒ P) ] propositional calculus

= [Q ⇒ (ok ⇒ P) ] H1

= [Q ⇒ H1(P) ] refinement

= H1(P) ! Q �

This lemma lets us cancel an application of H1 on the right-hand side of the
refinement relation. This works because H1(P) is a disjunction, and the cancela-
tion strengths the implementation. Something similar can be done with HP8, but
since HP8(P) is a conjunction, the cancelation takes place on the specification
side.

Lemma 2 (HP8-refinement). For any two relations P and Q with pg and pg ′

in their alphabets,

P ! HP8(Q) iff HP8(P) ! HP8(Q)

Proof

P ! HP8(Q) refinement

= [HP8(Q)⇒ P ] HP8

= [ IIP ; Q ; IIP ⇒ P ] sequence

= [ (∃ v0, v1 • IIP [v0/v ′] ∧ Q [v0, v1/v , v ′] ∧ IIP [v1/v ])⇒ P ]
predicate calculus

= [ IIP [v0/v ′] ∧ Q [v0, v1/v , v ′] ∧ IIP [v1/v ]⇒ P ] predicate calculus

= [ IIP [v0/v ′] ∧ Q [v0, v1/v , v ′] ∧ IIP [v1/v ]
⇒ IIP [v0/v ′] ∧ P ∧ IIP [v1/v ] ]

IIP , Leibnitz

= [ IIP [v0/v ′] ∧ Q [v0, v1/v , v ′] ∧ IIP [v1/v ]
⇒ IIP [v0/v ′] ∧ P [v0, v1/v , v ′] ∧ IIP [v1/v ] ]

sequence

= [ IIP ; Q ; IIP ⇒ IIP ; P ; IIP ] HP8

= [HP8(Q)⇒ HP8(P) ] refinement

= HP8(P) ! HP8(Q) �

Applications of the above lemmas justify the main result of this section.
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Theorem 11. There is a Galois connection between designs and pointer rela-
tions, where HP8 is the right adjoint and H is the left one.

D ! H(P) iff HP8(D) ! P

Here, D is a design whose alphabet contains pg and pg ′; and P is a pointer
relation whose alphabet contains ok and ok ′.

Proof

D ! H1(P) H1-refinement

= D ! P P is HP8

= D ! HP8(P) HP8-refinement

= HP8(D) ! HP8(P) P is HP8

= HP8(D) ! P �

Proof of closedness of the programming operators in this new theory is simple.

4.3 Healthy Pointer Designs

The variables ok and ok ′ describe observations about initiation and termination
of designs; they are certainly not program variables, and so must never be men-
tioned in program texts. In order to avoid confusion, a pointer design should
isolate ok in its own partition in pg and pg ′. This is a healthiness condition of
our combined theory.

HD P = P ∧ #group(ok , pg) = 1 ∧ #group(ok , pg ′) = 1

Further exploration of the laws of this theory is left as future work.

5 Conclusions

We have presented a UTP theory for programs involving variables whose record
values and their components may share locations. With this theory, we capture
an abstract memory model of a modern object-oriented language.

In this work, we do not consider, for instance, the issues of classes and visibility
in object-oriented languages, because our aim is the isolation of programming
concepts. On the other hand, we do not have an explicit memory model that
allows the definition of allocation and deallocation operations, because these are
not needed to reason about object-oriented programs.

In order to reason about total correctness, we have investigated the theory
that combines pointer relations and UTP designs. We established a formal link
to translate between the two theories.

Recursive records have also been considered by Naumann in the context of
higher-order imperative programs and a weakest precondition semantics [12]. In
that work, many of the concerns are related to record types, and the possibility
of their extension, as achieved by class inheritance in object-oriented languages.
Here, we are only concerned with record values. We propose to handle the issue
of inheritance separately, in a theory of classes with a copy semantics [17].
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Hoare & He present a theory of pointers and objects using an analogy with
process algebras [6]. They use a model of graphs based on a traces semantics [5],
where a graph describes a snapshot of the entire heap during the execution of an
object-oriented program. The heap is represented by a set of sets of traces: each
set of traces describing the paths that may be used to access a particular object;
this corresponds to our path groups. The main operator for updating the heap
is known as pointer swing, and it updates the target of a pointer; this corre-
sponds to our pointer assignment. In our work, we consider a model of pointers
in the unified context of programming language models. We also handle the cor-
respondence between the values of record variables and the sharing structure of
these variables and their components. To manage complexity, we use healthiness
conditions to factor out basic properties from definitions.

The idea of avoiding the use of locations to model pointers and sharing was
first considered in [2] for an Algol-like language. The motivation was the defi-
nition of a fully abstract semantics, which does not distinguish programs that
allocate variables to different positions in memory. In that work, groups are
represented by functions in which each variable is associated with the set of
variables that share its location. A healthiness condition ensures that variables
in the same location have the same value: this corresponds to our HP3. A stack
of functions is used in [2] to handle nested variable blocks and redeclaration. We
do not consider the scope issues of redeclaration, but we handle the presence of
record variables, and sharing between record components, not only variables.

The refinement calculus for object systems (rCOS) [9] is based on a UTP
semantics for a relational object-oriented programming language that contains
sub-typing, type casting, visibility, inheritance, dynamic binding, and polymor-
phism. Values in the language are drawn from primitive types or an infinite set
of object references, augmented by information essential to the resolution of dy-
namic typing. By using object identities, the model refers explicitly to storage
in an implementation-oriented way, and as a result is not fully abstract.

A UTP reference semantics for an object-oriented language has also been con-
sidered in [14]. In this case, we have a language that combines Object-Z [18], CSP,
and timing constructs. Again, object values have identities which are abstract
records of their location in memory.

For the kind of language in which we are interested, we believe that these
identities are not needed, and the simpler model of the theory of path groups is
enough. As already mentioned, our long-term goal is the definition of a reference
semantics for OhCircus: an object-oriented language that also combines Z and
CSP. Our approach, however, is based on the combination of models of isolated
features of this rather rich language.

In the short term, we plan to investigate refinement laws of our theory, and
explore its power to reason about pointer programs in general, and data struc-
tures and algorithms typically used in object-oriented languages in particular.
After that, we want to go a step further in our combination of theories and
consider a theory of reactive designs with pointers.
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Abstract. In this paper, we present a formalisation of a subset of the
unifying theories of programming (UTP). In UTP, the alphabetised re-
lational calculus is used to describe and relate different programming
paradigms, including functional, imperative, logic, and parallel program-
ming.

We develop a verification framework for UTP; we give a formal se-
mantics to an imperative programming language, and use our definitions
to create a deep embedding of the language in Z. We use ProofPowerZ, a
theorem prover for Z to provide mechanised support for reasoning about
programs in the unifying theory.

1 Introduction

Hoare and He [16] propose a relational approach to defining the semantics of a
variety of programming constructs including sequential and concurrent program-
ming notation, thus providing a unified framework for different programming
paradigms.

This approach takes specifications, designs and programs as predicates
[15, 12, 13, 24, 8]. Consequently, a specification can be seen as a less determin-
istic program with respect to a defined alphabet. The signature of a specifi-
cation language might include some non-implementable constructs, but can be
transformed to an executable program by using well defined refinement rules.
This approach allows for program statements and specification statements to be
mixed freely.

The unifying theories of programming (UTP) are an important mathemati-
cal framework for unifying the science of programming. Alphabetised relational
calculus (ARC ) is the logical basis of UTP. In the unifying theory, programs,
specifications, and designs are all represented as predicates defining relations
between an initial observation involving undashed variables, and a later obser-
vation involving dashed variables as in Z ’s schemas [33].

In this paper, we extend the formalisation of the alphabetised relational calcu-
lus [26], to include appropriate signature, and formalise an imperative program-
ming language for writing specifications and programs in UTP. We formalise the
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c© Springer-Verlag Berlin Heidelberg 2006



218 G. Nuka and J. Woodcock

language in Z and use ProofPowerZ, a conventional Z theorem prover to reason
about UTP programs and verify its algebraic laws.

The aim of the formalisation is twofold: to get a precise representation of the
programming notation in a theorem prover for mechanical support in reasoning
about theoretical aspects of the language and to provide a formal framework for
mechanical verification of the development of concrete applications. In general
mathematical proofs tend to be involving even for a small sized program, such
that correct analysis of a system requires the high level of precision provided
by formalisation. Programs can be proved to be well defined mechanically with
respect to the specification context. Programs can also be constructed in a step-
wise fashion and at each step the correctness of the refinement can be proved
with respect to the specification. This calls for a refinement calculus which is a
major research theme [30, 2, 22].

This paper is organised as follows. We present an overview of the alphabe-
tised relational calculus in the next section. Section 3 presents an introduction
to ProofPowerZ. In Section 4 we present the formalisation of the theory of predi-
cates and in Section 5 we present the formalisation of the specification language.
Section 6 deals with operators for program correctness. Section 7 summarises
the algebraic properties proved with respect to our formalisation. We present
related research in Section 8 and make conclusions in Section 9.

2 Overview of ARC

Relational calculus is a very useful framework for the study of mathematics
and theory of computer science. It presents a formalism, which can be used
to represent many phenomena in computer science and has been a basis for
analysing and modelling some computer science problems including program
specification, refinement, verification and database design.

The study of the calculus of relations was pioneered by De Morgan, Pierce,
and Schröder and was axiomatised by Tarski [31] in the 1940s. The theory
of relational algebras evolved from the axiomatisation of the calculus of rela-
tions by Tarski. Recently, Maddux [18] has presented a historical study of re-
lational algebras and axiomatisations of the calculus of relations in a modern
context.

ARC is based on Tarski’s calculus, but free variables appearing in the predicate
do play a major role, and are used to identify sub-theories. An alphabetised
relation is a pair (αp, p), where predicate p is the predicate containing no free
variables other than those in the alphabet, αp. In general, a relational calculus
provides a useful tool for concise and precise formal reasoning. Furthermore, a
relational formalisation provides a calculational approach to program correctness
and refinement. This makes calculations simpler, a property that is valuable in
reasoning about programs and in program development.

The alphabet of the relation is a set of observational names and contains
undashed and dashed variable names; the undashed names (input alphabet) are
disjoint from the dashed ones (output alphabet).
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Predicates are used to describe the behaviour of a program. A predicate may
consist only of a set of (in)equations, which can be composed using the relational
algebraic operators in the standard way.

The undashed variables represent an initial observation and the dashed vari-
ables represent the final observation. In some cases the relation is homogeneous;
that is, all the final global variables in a program are all the initial variables
primed.

outα(p) = inα′(p)

The predicate models observation of programs. For example, consider a simple
program, a program that increments the value of variable x by 1, with state
variables x and y,

x := x + 1

One model of this program is the following observation

x = 5 ∧ x ′ = 6 ∧ y ′ = y

The calculation of program correctness is a major feature of UTP. The refine-
ment relation is defined in terms of the universal closure of an implication. A
program P is a refinement of a specification S , S ! P , if every observation in P
is possible in S

S ! P =̂ [P ⇒ S ]

An important consequence of this relation is that refinement can be presented
in terms of non-determinism.

S ! P =̂ S � P = S

The signature of the calculus consists of primitive operators as well as those
defined in terms of the primitive ones. These include negation, disjunction and
existential quantification. General properties of many of calculus operators in-
clude commutativity, associativity, idempotence, and absorption. Other opera-
tors can always be added to the calculus as necessary for greater expressiveness
or convenience and are derived from the primitive ones.

The relation true is primitive, and denotes a universal relation that is a
bottom of the predicate lattice with respect to the refinement ordering above.
It describes all possible observations with respect to the alphabet in context.
Therefore for all programs, P

P = P ∧ true

Its dual, the relation false, is the empty relation, which is the top of the lattice.
All programs allow empty observation.

P = P ∨ false
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Theories in UTP are identified by their alphabets, signature and healthiness
conditions. Alphabets are sets of observational names that characterise a rela-
tion. The signature is the syntactical universe; the set of operators for denoting
objects in the given theory. The healthiness conditions model the essential prop-
erties of the theory.

Special variables are used to model extra observational information that char-
acterises a given theory: designs use okay to signify that a program has started
execution, in concurrency theories tr and ref model some aspects of event se-
quences and refusal sets respectively, while in reactive systems, wait models
stability of the program.

In this paper we focus on presenting the formalisation of imperative program-
ming notation and proving the algebraic laws of the language.

3 ProofPowerZ

ProofPower is a specialised HOL prover and was developed from the HOL system
with the proof infrastructure strengthened to support particular applications,
mainly to support the specification language Z. ProofPower supports the same
logic as other HOL systems [21, 27] but has a different proof infrastructure.
ProofPowerZ is an embedding of a Z theory on top of ProofPower and employs
higher order logic as the underlying proof engine for the Z notation. We will
refer to ProofPower as the collection of tools including ProofPowerZ in the rest
of the paper.

ProofPower’s implementation is in ML and follows the LCF paradigm for in-
teractive theorem proving. The LCF strategy means that users can only perform
valid logical inferences. ProofPower provides an environment in which you can
easily extend built in theories and also provides tactics (ML functions) which
you apply to construct proof.

Theory Development

Working with ProofPower starts with the development of a theory which is basi-
cally a collection of types, functions and theorems. Terms and theorems are ML
datatypes. A user can extend theories by using axioms or can derive theorems by
formal proof; thus, providing a consistent way to formalisation. This style is re-
ferred to as conservative extension. A user can use the HOL logic meta-language
(ML) to build new theorems from existing ones in a forward proof style or can do
goal directed proofs. A forward proof search also referred to as forward chaining
is mainly done in simpler proofs. Forward proof is constructed by applying ML
functions (which represent inference rules) to axioms or theorems that have pre-
viously been proved. The three main primitive rules used in forward proof are
assumption introduction, implication introduction and implication elimination.

Assumption introduction (asm rule) gets a term and returns a theorem.

t � t
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Implication elimination ⇒ elim is popularly known as Modus Ponens and gets
an implicative theorem and a theorem that is α convertible to the antecedent.

Γ1 � t1 ⇒ t2 Γ2 � t1
Γ1 ∪ Γ2 � t2

Implication introduction ⇒ intro proves an implicative theorem. That is

Γ � t1
Γ − {t1} � t1 ⇒ t

An inference rule can be a derived rule and an important derived rule in
ProofPower is the rewrite rule, which takes a list of theorems. It repeatedly
(unless qualified) replaces instances of the left hand side of an equation by the
corresponding instance of the right hand side until no further changes occur.

Variations of the rewrite rule include once rewrite rule, asm rewrite rule
and pure rewrite rule, where an inference rule is applied once, or the theorem
rewritten will include assumptions or no default rewriting will be done respec-
tively.

Most often goal-oriented proofs are undertaken. In this style a conjecture is
set up as a goal and users apply tactics to reduce the goal to a simpler subgoal.
This is done recursively until all the subgoals from the main goal are resolved;
thus, solving the main goal. Tactics are ML functions that decompose a goal into
subgoals and keep track of why discharging subgoals is equivalent to proving the
main goal. A tactic discharges a goal when it generates an empty list of subgoals.

4 The Embedding

We present an embedding of ARC and an imperative programming notation in Z.
An embedding is an encoding of some specialised logic or language into a different
formal system for the purpose of providing proof support and reasoning in it.
A user sees the syntax of the specialised language and sometimes this is mixed
with the syntax of the host language. The host system provides the underlying
proof support. Embedding can be shallow or deep, but most mechanisation lie
between the two extremes.

Shallow Embedding. In a shallow embedding a translation of the semantics of
the object language is developed and implemented into the host-language. Such
mechanisation does not implement the syntax and structure of the object lan-
guage. This approach is usually simpler and if the host language is powerful
enough you can reason about applications of the language using the host lan-
guage logic. However, such translation can be problematic in reasoning about
the object language, for example, a proposition referring to the object language
may not be expressible in the host logic. This can be seen in reasoning about
Z schemas in Bowen’s embedding of Z into HOL [3, 4] where reasoning about
schema conjunction in the translated HOL theory was not possible. This hap-
pens because the axioms and rules are theorems of the host language and may
not be expressible for meta-reasoning on the object language.
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Pred ::= trueA truth
| falseA falsity
| N compOpA Term prim. predicate expression
| ¬Pred negation
| Pred binPredOp Pred binary operators
| ∃n • Pred existential quantifier
| ∀n • Pred universal quantifier
| Pred [e/x ] substitution

Fig. 1. The syntax of a predicate

Deep Embedding. A different approach would be to carefully implement the
syntax of the object language into the host language as well, such that meta-
theoretic reasoning about the object language can be possible. Deep embedding
has been the approach of Maharaj [19] in the implementation of Z -Schemas into
a type theory, Melham [20] in mechanising π-calculus into HOL, and Camilleri
[7] in formalising CSP in higher order logic.

We take this latter approach in our work, where both the syntax and seman-
tics of the language are implemented into Z, and thereby allowing us to prove
theorems on the language itself.

4.1 The Theory of Predicates

We now define the syntax and the semantics of ARC, using the embedding ap-
proach we have chosen. The syntax for predicates is similar to that of the classical
predicate calculus.

We assume an infinite set of names denoting variables and an infinite set of
values, given as N and Value respectively. We present the syntax of predicates
in Figure 1, where variables x ,n and m range over N , e is an expression and A
is a set of names over the domain Values.

Predicates are formed in the standard way, but in our embedding the primitive
predicates carry alphabets. The constants trueA and falseA carry a particular
alphabet A. An atomic predicate, for example n =A e, carries alphabet A.
The (in)equality operators compOp are used to construct atomic predicates. In
practice the alphabet may be omitted if it can be calculated from the context.

The unary predicate operator (¬) negates a predicate. binPredOp represents
the binary predicate operators: disjunction (∨), conjunction (∧), implication
(⇒). Quantification follows standard notation with implicit typing. Substitution,
p[e/x ], is a substitution of expression e for variable x in predicate p.

Encoding the Syntax

The implementation of the syntax in a logic depends on the type of embedding
chosen. We implement a deep embedding, so the grammar of ARC is explicitly
represented allowing for structural induction on the format of the relational logic
which is amenable to meta-theoretic reasoning.
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The set of namesN and values Value are encoded as given types. The syntax of
ARC is encoded as a data type. Z provides free type style definitions which allow
embedding inductive and non-inductive data types into the logic. The predicate
type Pred is defined recursively as a Z free type with appropriate constructors
corresponding to the predicate constants and expression operators described in
Figure 1. For example, consider the predicate trueA, where A is the alphabet,
true is constructed as a function defined on a set of names as follows.

true : α→ Pred

The unary operator, negation, is a function from predicates to predicates

neg : Pred → Pred

Likewise the binary infix operators are defined similarly; for example, conjunc-
tion.

conj : Pred × Pred → Pred

For clarity of notation, we shall present the syntax using the conventional
predicate syntax, as opposed to using the formalised operator names. For exam-
ple we shall abbreviate conj (p, q) to p ∧ q. In some cases, where necessary, we
shall explicitly distinguish the formalised operators.

4.2 Semantics

We present the denotational semantics of the relational calculus, using the ap-
proach put forward by Scott and Strachey. In denotational semantics the mean-
ing of each predicate is derived from the meaning of its direct constituents using
a mathematical function.

The semantics of the predicates are given in the form of the Herbrand inter-
pretations and models, where the meaning of the predicates corresponds to the
observation relation that is a minimal model of the predicate.

We define three predicate meaning functions: β, which interprets predicates
to their models (observations), V , which interprets the value expressions to their
values, and α which calculates the alphabet of a predicate. These semantic func-
tions are implemented in the theorem prover ProofPowerZ.

Alphabets. Each predicate in ARC has an associated alphabet which is made
explicit in the predicate or can be calculated. The variables of the predicate can
be grouped into either free names and bound names. An alphabet, α, denotes
the free names that have been introduced by the predicate. We represent it as a
function from predicates to sets of names.

α : Pred → P N
Some predicates have their alphabet explicitly marked with them. For example
the alphabet of predicates true, false, and primitive predicate expressions are
always specified. Negating a predicate p does not change its alphabet, such that

α(p) = {n,m} ⇒ α(¬p) = {n,m}
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The alphabet of a binary predicate expression is the union of the alphabets
of the operands. Quantification removes a variable from the alphabet: we can no
longer observe its value.

α(∃ n • p) = α(p) \ {n} α(∀ n • p) = α(p) \ {n}
For example, if p is the predicate ∀n • m ={m} 1 ∧ n ={n} 2, then α(p) = {m}.

Substitution p[e/x ] allows an expression e to be systematically substituted
for free occurrences of the name x . It removes the variable x from the alphabet,
but introduces the names of expression e, αe(e) instead. If x is bound to some
quantifier in predicate p then substitution does not change the alphabet since
x /∈ α(p)

α(p[e/x ]) = (α(p) \ {x}) ∪ αe(e)} � occurs(x , p) � α(p))

We say that a variable x occurs in predicate p, if x ∈ αp

occurs(x , p) ≡ x ∈ α(p)

Substitution may cause name capture. In the sequel we discuss the methods we
use to avoid name capture.

Decoration. The alphabet of a program consists of two sets of variables, the
input alphabet, referred to as undashed variables (such as x , y,n,m) and output
alphabet which refers to decorated variables (such as x ′, y ′,n ′,m ′). We model
variable decoration using the total injection dash

dash :N�N

Bound Variables. The semantic function σ defines the set of bound variables in
a predicate, and is a set of names disjoint from the alphabet of the predicate. We
need to distinguish between bound and free variables occurring in a predicate so
that we can reason about substitution and quantifiers.

σ : Pred → P N
Predicates trueA, falseA, and primitive expressions (e.g.n =a e) do not have

any bound variables. All variables that appear in them are free. The bound
variables of the negation of a predicate are the same as those bound variables
of the predicate itself. The set of bound variables of conjunction, disjunction,
implication, equivalence are the union of the respective bound variables of the
two constituent predicates.

Quantification introduces a bound variable, the one quantified.

σ(∃ n • p) = σ(p) ∪ {n}
σ(∀ n • p) = σ(p) ∪ {n}

Substitution in semantics that avoid name clashes, does change the bound
variable set. Whenever a new variable would make an already existing variable
become bound, then the original variable is renamed.
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4.3 Observations

An observation of a particular program can be expressed by a predicate. This
can be represented by a set of pairs where the first element in each pair is a
variable from the alphabet of the predicate and the other element is a constant
value assigned to the particular variable. We represent an observation as a partial
function, Binding.

Binding ==N �→ Value

We model it as a partial function since some variables from the alphabet set may
not be associated with any particular value or the alphabet of the predicate may
not be the entire name set. Observations expressed by a predicate are defined
by the semantic function β: a set of observations. Given a predicate p we can
calculate the set of observations (bindings) denoted by the predicate by applying
the β function.

β : Pred → PBinding

The set of observations of a predicate p are similar to the Z schema bindings.
We use the terms observations and bindings interchangeably in this paper. The
set of bindings for trueA are all the pairs involving alphabet A. The bindings
of trueA represent the universal function set with respect to alphabet A. The
predicate falseA gives no observations and its set of bindings is empty. Given
term t , a set of names A and n ∈ Name

β(trueA) = { b : Binding | dom b = A }
β(falseA) = ∅

For predicate expressions involving terms, the set of bindings depends on the
expression compOp operator. For example if ) is one of the expression operators,
then

β(m )A t) = { b : Binding | dom b = A ∧
m ∈ dom b ∧ b(m) ) V(t) }

where V(t) gives the value after evaluation of term t . Negating a predicate p
gives a set of bindings that are not in the set of bindings for p. This set of
observations is represented as the set difference between the observations of
trueαp and bindings of p.

β(¬p) = β(trueα(p)) \ β(p)

Extension set. Disjoining and conjoining of predicates results in extending the
observations described by one predicate to the possible observations from the
alphabet of the other predicate. To model the bindings of such predicates we
use an extend function. Given a set of observations s ∈ P Binding we can extend
this set to a new set by enlarging the domain of every element in s .
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extend : PBinding × P N× P N→ PBinding

∀ s : P Binding; α1, α2 : P N ; b : Binding •
b ∈ extend(s , α1, α2)⇔ α1 � b ∈ s ∧ dom b = α1 ∪ α2

An extension set extend(s , α1, α2) gives a map extension for observations in s .
Consider a bindings set for a predicate p, β(p), extending this set from α(p) to
a set of variables a where a ∈ P N , can be represented as β(p)+A. That is for
every predicate p and A ∈ P N

β(p)+A =̂ extend(β(p), α(p),A)

Substitution. The embedding we have implemented forces us to deal with the
complex issue of substitution. In a shallow embedding this can easily be taken
care of by the host logic. But in a deep embedding we have to provide for
substitution. In the substitution, p[e/x ] every occurrence of x is replaced by e.
In general this can be formalised as

β(p[e/x ]) =̂ β(p ∧ (x = e))−x ) � occurs(x , p) � β(p)

This has to be done in a way that avoids capture. For the predicates that are
not quantified the substitution is straight forward.

Formalisation of the capture avoiding substitution semantics requires perform-
ing an appropriate renaming (using fresh variables) on the bound variables. We
define a function that creates fresh free variables that do not clash with either
the free variables or the bound variables in the predicate terms. The function
fname changes the variable x , in a way that it is no longer a member of A.

fname(x ,A) �= x ∧
finite(A)⇒ fname(x ,A) �∈ A

We assume our source of names is infinite as otherwise we would run out of fresh
names to generate.

Now we can define the semantics of substitution, where any quantified predi-
cate has appropriate variable renaming.

β(∃ y • p[e/x ]) = β(∃ z • p[z/y][e/x ]
β(∀ y • p[e/x ]) = β(∀ z • p[z/y][e/x ]

where z = fname(y,names(p)) and names(p) = α(p) ∪ σ(p).
Substitution is a complex operation and if dealing with logical syntax and in

avoiding name capture and need for alpha conversion de Bruijn scheme [5] is
sometimes used. De Bruijn scheme uses an indexing technique where numbers
are used instead of names. However we choose the renaming scheme as it is
intuitive and still not very difficult. Gabbay and Pitts [10] formalises most of
the ideas in the renaming scheme in the nominal logic [28] using freshness and
swapping and partly justifies our choice.
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β(p ∨ q) = β(p)+α(q) ∪ β(q)+α(p)

β(p ∧ q) = β(p)+α(q) ∩ β(q)+α(p)

β(∃n • p) = β(p)−n

β(∀n • p) = β(true(α(p) \ {n})) \ β(¬p)−n

β(p ⇒ q) = β(¬p ∨ q)

β(p ⇔ q) = β((p ⇒ q) ∧ (q ⇒ p))

β(p � q) = β(¬(p ⇔ q))

Fig. 2. Semantics of some predicate terms

P ::= II skip
| ⊥ abort
| � miracle
| P � P � P conditional
| P ; P sequential composition
| n := e assignment
| P � P non deterministic choice
| {p}Q{r} Hoare triple
| c⊥ assertion
| c� assumption
| wp(p, r) weakest precondition
| var x variable declaration
| end x variable undeclaration
| b ∗ P iteration

Fig. 3. The syntax of a UTP program

Other predicates. We can now present the semantics of the rest of the predicate
operators. For a detailed account refer to [26]. Bindings of implications are de-
fined in terms of the bindings of disjunction. And those of equivalence in terms of
conjunction and implication, with exclusive-or defined in terms of the negation
of equivalence.

5 The Specification Language

The operators of the language cover conventional programming concepts.
The notation consist of the standard imperative programming operators in-

cluding assignment, conditional, sequential composition, variable declaration and
iteration. It also includes program correctness operators such as Hoare triples,
Floyd’s assertions, assumptions and weakest preconditions.
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We now present the formalisation of the operators in detail.

Assignment. Assignment is a primitive operator for many programming lan-
guages. An assignment (x := e) updates the value of x to the value e. Values
for any of the variables not mentioned remain unchanged. Expression e may not
contain any dashed variables. Let A = {x , y, z , x ′, y ′, z ′}, and let α(e) ⊆ A then

x :=A e =̂ (x ′ = e ∧ y ′ = y ∧ z ′ = z )

α(x :=A e) =̂ A

A special assignment predicate denoted by II (skip) does not change any obser-
vations. Skip is marked with its alphabet.

IIa =̂ (v̄ = v̄ ′), where a = (v̄ , v̄ ′)

α(IIa ) =̂ a

The Conditional. A common programming construct is the conditional with its
general notation

if b then p else q

meaning that depending on the evaluation of the predicate condition b the pro-
gram may choose to execute p or execute q. We present the conditional in the
compact notation of [16].

β(p � b � q) =̂ β((b ∧ p) ∨ (¬b ∧ q)), if α(b) ⊆ α(p) = α(q)
α(p � b � q) =̂ α(p)

A condition in this case is some predicate that has an alphabet without output
variables, it represents a predicate term that always terminates after evaluation.
In other theories this can be relaxed and output variables can be allowed.

In a conditional the set of bound variables is the set of bound variables in the
predicates. For every predicate b, p and q

σ(p � b � q) = σ(p) ∪ σ(b) ∪ σ(q)

Sequential Composition. The composition of two relations produces an interme-
diary state which is not observable. For predicate p and q where outα(p) = v̄ ′

and inα(Q) = v̄ . The representation p(v) represents substitution.

β(p(v̄ ); q(v̄ )) =̂ β(∃ v̄0 • p(v̄0) ∧ q(v̄0)), if outα(p) = inα′(q) = v̄
α(p(v̄ ′); q(v̄ )) =̂ inα(p) ∪ outα(q)

where inα and outα of the composition are defined as follows

inα(p(v̄ ′); q(v̄ )) =̂ inα(p)
outα(p(v̄ ′); q(v̄ )) =̂ outα(q)

The final state of the composition is the final state of q. The alphabet of a
composition is therefore the input alphabet of p and the output alphabet of q.
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Sequential composition is associative and distributes over the conditional.

Non-determinism. Non-determinism is modelled by a choice operator. Given a
program with two components, the program may non-deterministically choose
one component from the other. Choice is define in terms of disjunction

β(p � q) =̂ β(p ∨ q), if α(p) = α(q)
α(p � q) =̂ α(p)

The choice operator is associative, symmetric as well as idempotent. The dual
of disjunction is conjunction

β(p % q) =̂ β(p ∧ q)

α(p % q) =̂ αp ∪ αq

We represent a program that has been made less deterministic by the implication
law

[p ⇒ (p � q)]

where the square braces mean that the predicate is everywhere quantified, i.e.,
it is quantified on every variable in the alphabet of the predicate. A bottom
element, usually represented as (⊥), of such an implication ordering represents
a program that is unpredictable. This is referred to as Abort .

β(⊥a) =̂ β(true)
α(⊥a) =̂ a

On the other end of the ordering we have the strongest element, ('), which
represent a program that can not be used and whose power is miraculous. This
predicate implements every specification. We denote this predicate as a miracle

β('a) =̂ β(false)
α('a) =̂ a

Variable declaration. New variables can be introduced into scope at any point
within the program. A variable block marks the scope of the new variables and
the new variables are free within the scope. The program statement var x marks
the start of the variable block and program statement end x marks the end of
the block.

β(var x ) =̂ β(∃ x • II)

β(end x ) =̂ β(∃ x ′ • II )

A program variable x has observational variables x and x ′. We assume that x
and x ′ belong to the alphabet in context. For example, if the alphabet in the
context is A, then the alphabet of the variable declaration is defined as follows

α(var x ) =̂ A \ {x}
α(end x ) =̂ A \ {x ′}
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Consequently we have

β(var x ; p) = β(∃ x • p)

β(p; end x ) = β(∃ x ′ • p)

Iteration. Before we define the implementation of iteration, we require the the-
ory of fixed points defined elsewhere. The refinement relation has been defined
already. We employ the fixpoint theorem for complete lattices to define the se-
mantics of recursion.

Proposition 1. Consider a set of predicates P with an ordering as defined be-
fore. Then the following are equivalent

1. P is a complete lattice
2. P satisfies the following (healthiness) conditions if αP ⊆ A

(a) P % trueA = P
(b) P � falseA = P

where % and � are the meet and join lattice operators.

It is straight forward to show that the refinement relation is a partial order (i.e.
it is reflexive, antisymmetric and transitive. We also show that arbitrary joins
and meets exist for P and that the bottom of the lattice is ⊥A and the top of
the lattice is 'A.

Since the alphabetised predicates form a complete lattice, every continuous
function has a fixed point, a result by Tarski. Considering that any continuous
function is also monotonic and that ! is a complete partial order and a com-
plete lattice, we can now use the Knaster-Tarski fixed point theorem to define
recursion. The weakest fixed point for functions on P is defined as

μ(f ) = (�{x : P | fixedPoint(x )})

where a pre-fixed point for a function f , f (x ) ! x , would give the same result.
The semantics of the while loop then can be defined in term of the weakest

fixed point.

β(b ∗ P) =̂ β(μ X • ((P ; X ) � b � II ))

6 Program Correctness

A major theme in automation is proving correctness of programs. The correct-
ness theories of Hoare-style calculus [14], Floyd’s assertions [9] and Dijkstra’s
weakest precondition calculus [8] are well known. The key concepts are the use
of conditions (assumptions and assertions) to annotate programs. These become
the basis for formal proof of the correctness of the programs.
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Assertions and Assumptions. Assumptions are program properties that we as-
sume to hold at some point.

β(c�) =̂ β(II � c � ')

If the condition c is true, the program skips, otherwise it behaves miraculously.
An assertion is a predicate inserted at particular points in program statements
that is expected to hold at that point.

β(c⊥) =̂ β(II � c � ⊥)

It is defined as follows: if c is true, it behaves as skip, otherwise the program
aborts.

Using assertions and assumptions can help in an effective way, improve observ-
ability, localisation of design analysis for correctness. They provide functional
checks at critical points inside a program block or internal and external inter-
faces.

Assertions in code serve as internal invariants, control flow invariants or pre-
post conditions. Most modern programming languages (e.g in Java 2 Platform,
C/C++) support such constructs. Some programming languages like Eiffel [17]
encourage developers to use assertions by design (“Design by Contract”).

Hoare triple. Hoare logic provides a system of logical rules to reason about
program correctness. The key feature is the Hoare triple. A Hoare triple is spec-
ification statement that was designed to help provide for partial and total cor-
rectness mechanisms in Hoare logic. A statement {p}Q{r}, is a predicate that
says: whenever the property p holds before a run of the program Q , then Q is
guaranteed to terminate and on termination it will satisfy the post condition r.

β({p}Q{r}) =̂ β([Q ⇒ (p ⇒ r ′)])

Here p is the precondition of Q and r is the post condition of program statement
Q . Alternatively, this can be expressed using the refinement ordering.

{p}Q{r} = (p ⇒ r ′) ! Q

Weakest precondition. Dijikstra’s weakest precondition calculus [8] has been
used to assign meaning to programs. It is also used for correctness calculation in
program analysis. A weakest precondition identifies an initial condition that will
guarantee proper termination of a program. For example, given a program p, and
a post condition r for the program. the weakest precondition is the condition
that has to hold for program p to satisfy the postcondition r .

β(wp(p, r)) =̂ β(¬(p; ¬r))

Weakest precondition and Hoare triples are related. The problem of calculating
the weakest precondition reduces to calculating the precondition p in the triple
{p}Q{r} i.e. [p ⇒ wp(Q , r)].
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7 Algebraic Laws

The predicate operators implemented in this paper do enjoy several algebraic
properties as a consequence of their definitions. We will not list a complete list
of these properties in this paper but a complete list of the algebraic laws can be
found in [16, 23, 26].

We have proved a number of laws concerning the basic properties of predicates
and programs [26], including the following.

Basic laws. Laws for idempotence, commutativity, associativity and absorption
of the operators for conjunction and disjunction of predicates.

Laws concerning Quantifiers. Laws of idempotence, commutativity, associativity
of existential and universal quantifiers.

Laws for the Specification language. The programming operators have several
properties including distributivity over certain operators, idempotence.

Lattice properties. We have proved that the refinement ordering, !, is a partial
order (i.e. it is reflexive, antisymmetric and transitive). Subsequently, we have
shown that the set of alphabetised predicates with a defined alphabet, A under
the refinement relation !A is a complete lattice. We have shown that the top of
the lattice is 'A and the bottom of the lattice is ⊥A.

Many of the theorems can be proved from the definitions and the sets and
relation theories of the Z library of ProofPower.

8 Related Work

In our earlier work [26] we implemented the semantics of ARC in the theorem
prover Z/EVES [29]. This work is similar to the one presented here, but the
Z/EVES tool is different from the proof environment of ProofPowerZ in many
respects. Importantly, Z/EVES is not a flexible environment that can be eas-
ily extended to build your own theories. It is most suited to reasoning about
software specification as opposed to implementation of specification languages.
ProofPower on the other hand offers a deeper embedding of Z and offers much
more flexibility in choice of actions and tactics to use than Z/EVES. It also offers
a much easier way to build theories and offers ways of merging your own theo-
ries with built in theories as it uses the LCF paradigm for interactive theorem
proving.

A relational approach to specification and programming has been at the heart
of many formalisms including the Z specification language. However, the UTP
approach is special and significant as it allows and uses several useful ideas
from different theories and presents an integrated mathematical framework for
describing programs. The formalisation of UTP is therefore in itself useful.

Formalisation of the semantics of programming languages was pioneered by
Gordon [11]. Gordon explores the mechanisation of a software verification by
deriving the rules of the Hoare logic for a simple programming language with
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while statements. Based on this mechanisation he develops a verification condi-
tion generator.

Similar encodings of programming languages have been done, notably the
work of Nipkow [25] in formalising part of a programming textbook and Back
et al. [1] in formalising Back’s refinement calculus [2]. Nipkow implements the
semantics of a textbook “Formal Semantics of Programming Languages” by
Winskel [32] and proves completeness and soundness of a simple program ver-
ifier. He presents the operational, axiomatic and denotational semantics and
proves their equivalence. Back et al. formalises a refinement calculus in higher
order logic. They embed both the predicates and the command notation of the
calculus and define the semantics in terms of the weakest preconditions. This
work is ongoing and presently have developed a refinement calculator [6], a useful
tool to ensure that proper abstraction and modularity is preserved in program
construction.

Our formalisation in general is related to all these. However, there are some
differences. We implement UTP in first order logic using a Z theorem prover.
This is of course not a very common approach for embeddings even though first
order theorem proving is popular and indeed all the above mentioned research is
done in higher order logic. We are also motivated to reuse Z theories since UTP
has some similarities with Z we are therefore prepared to use a less expressive
logic. We also treat the different subtheories in a unified way, where programs
and the associated assertion language are all defined in the relational frame using
denotational semantics and we implement a deep embedding.

9 Conclusions

We have presented a theory of the alphabetised relational calculus and its formal
definition in the Z notation. Our approach has been to embed both the syntax
and the semantics into Z so that we can be able to reason and prove theorems
on the language. An alternative approach could have been direct translation of
the semantics into equivalent Z denotations. In this approach the syntax of the
language is not implemented in the host language and thus making it difficult
to reason and make reference to propositions on the whole language.

We have presented various definitions of the imperative programming con-
structs of a subset of UTP and formalised their denotational semantics in Z
using ProofPowerZ. We have also derived the rules of Hoare logic from their se-
mantic definitions and thus can apply the Hoare laws to calculation of program
correctness. A verification condition generator which we develop elsewhere nicely
handles such calculations. Several algebraic laws for UTP have been proved and
can used for proving correctness of refinement steps.

This formalisation is done conservatively, using definition of existing concepts
to define new concepts. Therefore, the theory is guaranteed to be consistent. The
formalisation we have presented forms the basis on which further mechanisation
of UTP and program correctness analysis can be done.
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Abstract. We give an algebraic model of the designs of UTP based on
a variant of modal semirings, hence generalising the original relational
model. This is intended to exhibit more clearly the algebraic principles
behind UTP and to provide deeper insight into the general properties of
designs, the program and specification operators, and refinement. More-
over, we set up a formal connection with general and total correctness of
programs as discussed by a number of authors. Finally we show that the
designs form a left semiring and even a Kleene and omega algebra. This
is used to calculate closed expressions for the least and greatest fixed-
point semantics of the demonic while loop that are simpler than the ones
obtained from standard UTP theory and previous algebraic approaches.

1 Introduction

The Unifying Theories of Programming (UTP), developed in [13], model the
termination behaviour of programs using two special variables ok and ok ′ that
express whether a program has been started and has terminated, respectively.
Specifications and programs are identified with predicates relating the initial
values v of variables to their final values v′; moreover, ok and ok ′ may occur
freely in predicates. Using these variables, Hoare and He introduce a special
class of predicates that reflect an assumption/commitment style of specification.
These designs have the form

P � Q ⇔df ok ∧ P ⇒ ok ′ ∧ Q ,

with ok and ok ′ not occurring in P or Q. The informal meaning is: if a compu-
tation allowed by the design has started in a state that satisfies the precondition
P it will eventually terminate in a state that satisfies the postcondition Q.

In the general case, UTP allows the precondition P to involve both initial and
final values of the program variables. A subclass that is interesting for a number
of reasons is that of normal designs in which P is a condition, i.e., is only
allowed to depend on input values of variables. Originally [13] these were called
(H3) designs and characterised by a healthiness condition; the term “normal” is
due to [10]. A yet smaller subclass, the feasible or (H4) designs models programs
that cannot “recover” from nontermination.
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The aims and results of the present paper are the following:

1. We model normal designs in a more general class of algebras than pure rela-
tion algebra. This is intended to exhibit more clearly the algebraic principles
behind UTP and to provide deeper insight into the general properties of
designs, the program and specification operators, and refinement.

2. We set up a formal connection between UTP and the theories of general
(e.g., [2, 3, 9, 19, 21]) and total (e.g., [1, 5, 6, 8, 20]) correctness of programs
(the latter also being known as demonic semantics).

3. We show that the designs form a left semiring and even a Kleene and omega
algebra. This is used to calculate closed expressions for the least and greatest
fixed-point semantics of the demonic while loop that are simpler than the
ones obtained from standard UTP theory and previous algebraic approaches.

To achieve this we model normal designs as pairs (a, t) where a corresponds
to a state transition relation and condition t characterises the input states from
which termination is guaranteed. The structure from which a and t are taken
is that of an idempotent semiring which is an algebraic abstraction of the basic
operations of choice and sequential composition, as detailed in the next section.

2 The Basis: Choice and Composition

A semiring is a structure (S, +, 0, ·, 1) such that

– (S, +, 0) is a commutative monoid,
– (S, ·, 1) is a monoid,
– operation · distributes over + in both arguments
– and 0 is a left and right annihilator, i.e., 0 · x = 0 = x · 0.

A semiring is idempotent if + is, i.e., if x+x = x. Then + can be interpreted as
(angelic) choice, with 0 modelling the most partial program with no transition
possibilities at all, and · as sequential composition, where 1 models the program
skip. In this case, the relation x ≤ y ⇔ x + y = y is a partial order, called the
natural order on S. It has 0 as its least element. Moreover, + and · are isotone
w.r.t. ≤ and x + y is the least upper bound or join of x and y w.r.t. ≤.

An idempotent semiring is Boolean if it also has a greatest lower bound or
meet operation ∧, such that + and ∧ distribute over each other, and an opera-
tion that satisfies de Morgan’s laws as well as x ∧ x = 0 and x + x = ', where
' = 0 is the greatest element. In other words, a Boolean semiring is a Boolean
algebra with a sequential composition operation. To save parentheses we use the
convention that ∧ binds tighter than + but less tight than · does. We we use ∧
rather than � for the meet to avoid a clash of notation between semiring theory
and the theory of UTP. To disambiguate the formulas we use a larger ∧ for
meta-logical conjunction.

An important, even Boolean, semiring is REL(M) = P(M ×M), the algebra
of binary relations under union and composition over a set M , of which the
predicates of UTP form a special instance. The greatest element is ' = M ×M .
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Next to that, we have the Boolean semiring TRC(A) of sets of traces (i.e., finite
strings) over alphabet A under union as + and trace concatenation (i.e., fusion
product) as the · operation. TRC(A) is isomorphic to the path algebra described
in detail in [7]; in the present paper it will mainly be used for counterexamples
to properties that hold in REL(M) but not necessarily in general semirings.

3 Modelling Conditions

Elements of REL(M), denoted by predicates relating pre- and post-states, can be
used to describe the input/output behaviour of programs. To keep the framework
uniform one wants to encode also assertions about the program variables, i.e., to
characterise subsets N ⊆ M of states, as special predicates or relations. There
are three basic methods to do this:

1. Use predicates that do not depend on the output values of variables, corre-
sponding to right-universal relations N ×M . In a semiring with ' they are
abstractly characterised as right ideals, i.e., as elements a with a ·' = a.

2. Use predicates that do not depend on the input values of variables, corre-
sponding to left-universal relations M × N . In a semiring with ' they are
abstractly characterised as left ideals, i.e., as elements a with '· a = a.

3. Use sub-predicates of skip corresponding to partial identity relations of the
form {(s, s) : s ∈ N}. In an idempotent semiring they are abstractly charac-
terised as elements a with a ≤ 1.

Each of these approaches has its advantages and disadvantages. Classical UTP
uses variant 1, while variant 3 is used in test and modal semirings. Since we
are going to import some results from the latter framework, we will show some
connections between variants 1 and 3 (we do not need variant 2 in the present
paper, but the treatment for it would be symmetrical).

1. A test semiring [15] is a pair (S, test(S)), where S is an idempotent semiring
and test(S) ⊆ [0, 1] is a Boolean subalgebra of the interval [0, 1] of S such
that 0, 1 ∈ test(S) and join and meet in test(S) coincide with + and · . This
fits well with the notation in switching and lattice theory and is the reason
why + is used for general choice in semiring notation. In general, test(S)
may be a proper subset of the elements below 1 in S. The negation of test p,
i.e., its complement relative to 1 in test(S), is denoted by ¬p. We have the
correspondences false ↔ 0 and true ↔ 1. In a test semiring, for p ∈ test(S)
and a ∈ S, the products p ·a and a ·p are the input and output restrictions of
a to those pre-/post-states that satisfy p. An important example is REL(M)
with the partial identities as tests.

2. A (right) pre-condition-semiring is a pair (S, cond(S)), where S is an idem-
potent semiring with a greatest element ' and cond(S) ⊆ S is a Boolean
subalgebra of S with 0,' ∈ cond(S) satisfying the following properties: the
join operation in cond(S) coincides with + and for every element a ∈ S
and every condition t ∈ cond(S) the meet t ∧ a, i.e., their greatest lower
bound w.r.t. ≤, exists and satisfies (t + u) ∧ a = (t ∧ a) + (u ∧ a) as well as
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t ∧ (a + b) = t ∧ a + t ∧ b. The meet t ∧ a is also called the input restriction of
a by t. We have the correspondences false ↔ 0 and true ↔ '. The negation
of t, i.e., its complement relative to ' in cond(S), is denoted by t. Finally,
S is called a (right) condition semiring if all elements of cond(S) are right
ideals. An example is again REL(M), with the right-universal relations as
conditions.

We will use the letters a, b, c, . . . for semiring elements, p, q, r, . . . for tests and
s, t, u, . . . for conditions. It should be noted that 0 and ' are always right (and
left) ideals. For 0 this follows from its left annihilation property, while for ' we
get, using neutrality of 1 and isotony, ' = '· 1 ≤ '·' ≤ ', which, together
with antisymmetry of ≤ shows the claim.

In a pre-condition-semiring there is no reasonable definition of output restric-
tion. However, as we will see below, for condition semirings there is.

Using input restriction we can define conditionals by setting, respectively,

a � p � b =df p · a + ¬p · b , a � v � b =df v ∧ a + v ∧ b .

Moreover, we have the following correspondence for input restriction:

Lemma 3.1. [16] In every test semiring S with greatest element ', for all p ∈
test(S) and a ∈ S the meet p ·' ∧ a exists and p · a = p ·' ∧ a.

By associativity of · and (p ·') ·' = p · ('·') = p ·' the element p ·' is indeed
a right ideal. In fact it is easy to show that the right ideals in a semiring S with
' are exactly the products a ·' for a ∈ S.

Now we look at condition semirings. We obtain the representation

t = (t ∧ 1) ·' , (crep)

and t ∧ a = (t ∧ 1) · a, the analogue of Lemma 3.1, by specialising the

Lemma 3.2. (t ∧ a) · b = t ∧ (a · b) for a condition t.

Proof. (≤) By isotony, (t ∧ a) · b ≤ a · b and (t ∧ a) · b ≤ t · b ≤ t · ' = t since, as
a condition, t is a right ideal.
(≥) By Boolean algebra and the first inequality, t∧(a·b) = t∧((t∧a)·b+(t∧a)·b) ≤
t ∧ ((t ∧ a) · b + t ∧ (a · b)) = t ∧ ((t ∧ a) · b) ≤ (t ∧ a) · b. �%

Corollary 3.3. In a condition semiring, t ∧ 1 ≤ u ∧ 1 ⇔ t ≤ u.

Proof. (⇐) follows by isotony of meet.
(⇒) t =

(crep)
(t ∧ 1) ·' ≤

(assump., isot.)
(u ∧ 1) ·' =

(crep)
u. �%

So cond(S) and the set CS(S) =df {t∧1 : t ∈ cond(S)} of condition subidentities
are order-isomorphic. Hence also CS(S) is a Boolean algebra with

t ∧ 1 + u ∧ 1 = (t + u) ∧ 1 ,
(t ∧ 1) ∧ (u ∧ 1) = (t ∧ 1) · (u ∧ 1) ,

¬(t ∧ 1) = t ∧ 1 .
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Altogether we have the

Corollary 3.4. Every condition semiring S can be made into a test semiring
by setting test(S) =df CS(S) and choosing the operations as above.

By these results, in a condition semiring we can define the output restriction of
a by t as a · (t ∧ 1).

4 Domain and Modal Operators

The domain of a semiring element a is intended to characterise the set of possible
input states of a, i.e., the states from which corresponding output states may be
reached under a. Again, such sets can be modelled by tests or by conditions.

A simple equational axiomatisation for the case of test semirings has been
presented in [7]. We give a corresponding axiomatisation for the case of pre-
condition-semirings here. Both cases are compared side-by-side in [12].

The domain operation  : S → cond(S) has the axioms

a ≤ a ∧ a (cd1)
(t ∧ a) ≤ t (cd2)

(a · (b ∧ 1)) ≤ (a · b) (cd3)

Actually, (cd1) and (cd3) can be strengthened to equations (see Lemma 4.1
below). By reasoning as in [7] we obtain that (cd1) ∧ (cd2) is equivalent to

a ≤ t ⇔ a ≤ t ∧ a ⇔ a ≤ t . (GCc)

This property has the form of a Galois connection that corresponds to the one for
test semirings with ' (see [7] for details). Moreover, by shunting, (cd1) ∧ (cd2)
is equivalent to a ≤ t ⇔ t ∧ a ≤ 0. By the Galois connection, the domain
operation is unique if it exists. Moreover, one obtains the following consequences.

Lemma 4.1.

1. a ≤ 0 ⇔ a ≤ 0 , 6. a = a ∧ a ,
2. (a + b) = a + b , 7. (t ∧ a) = t ∧ a ,
3. a ≤ b ⇒ a ≤ b , 8. (a · b) ≤ (a · b) ,
4. t = t , 9. (a ·') = a ⇔ b = b ·' ,
5. (a) = a , 10. (a · b) ≤ a ⇔ c = c ·' .

Of these, properties 9. and 10. again show the special importance of using con-
dition semirings rather than pre-condition-semirings. See [12] for the proofs.

By 9. and (crep), in a condition semiring the third axiom simplifies to

(a · b) ≤ (a · b) . (cd3)

Moreover, we have 1 =
9.

(1 ·') = ' =
4.
'.

Now we make the connection with the relational case more explicit. Call a
semiring S with ' ideal-closed, briefly id-closed, if its set RI(S) of right ideals is
a Boolean algebra. The relation semiring REL(M) is id-closed whereas the trace
semiring TRC(A) is not.
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Lemma 4.2.

1. Consider an id-closed semiring S. Then the pair (S, RI(S)) can uniquely be
made into a domain semiring by setting a =df a · '.

2. In this case we have a · ' = a · '.

Proof. 1. We show that  satisfies the domain axioms.
(cd1) a ∧ a = a, since a = a · 1 ≤ a · '.
(cd2) (t ∧ a) =

(def.)
(t ∧ a) ·' =

(Lemma 3.2)
t ∧ a ·' ≤ t.

(cd3) (a · b) =
(def., assoc.)

a · b ·' ·' = a · b ·' =
(def.)

(a · b).
2. a · ' = a · ' · ' = a · '. �%

Based on domain we can define forward modal operators by

〈〈a〉〉t =df (a · t) , [[a]]t =df 〈〈a〉〉t .

Thus 〈〈a〉〉t and [[a]]t characterise those states for which some and all a-successor
states satisfy t, respectively; [[a]]t is the abstract counterpart of the wlp operator
[19]. The special case corresponding to REL(M) is immediate from Lemma 4.2:

Corollary 4.3. Over an id-closed semiring 〈〈a〉〉t = a · t and [[a]]t = a · t.
From the general definitions it straightforward to prove the following properties:

〈〈a〉〉0 = 0 , [[a]]' = ' ,
〈〈0〉〉t = 0 , [[0]]t = ' ,

〈〈a〉〉(t + u) = 〈〈a〉〉t + 〈〈a〉〉u , [[a]](t ∧ u) = [[a]]t ∧ [[a]]u ,
〈〈a + b〉〉t = 〈〈a〉〉t + 〈〈b〉〉t , [[a + b]]t = [[a]]t ∧ [[b]]t ,
〈〈t ∧ a〉〉u = t ∧ 〈〈a〉〉u , [[t ∧ a]]u = t + [[a]]u ,
〈〈1〉〉t = t , [[1]]t = t ,

〈〈a · b〉〉t = 〈〈a〉〉〈〈b〉〉t , [[a · b]]t = [[a]][[b]]t .

Hence 〈〈a〉〉 and [[a]] are isotone. Moreover, the diamond is isotone and the box is
antitone in its first argument, respectively.

Because of the importance of modal operators, we call a test or condition
semiring with domain modal.

5 Designs, Commands and Correctness

To stay in line with the treatment in [13], we now restrict ourselves to modelling
sets of states by conditions rather than tests. Assume a modal condition semiring
S. As mentioned in the introduction, then the set of commands [19, 18] over S
is COM(S) =df S × cond(S). In a command (a, t) the element a ∈ S describes
the state transition behaviour and t ∈ cond(S) characterises the states with
guaranteed termination; all states characterised by t have the “result” of looping
besides any proper states that may be reached from them under a. The command
(a, t) is synonymous both for the normal designs t � a of [13] and the normal
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prescriptions t �� a of Dunne [10]. The difference is reflected in the refinement
relations on commands that will be detailed below. The following definitions and
properties are adaptations of the corresponding ones in [18].

In the command view the weakest (liberal) precondition can be defined as

wlp.(a, t).u =df [[a]]u , wp.(a, t).u =df t ∧ wlp.(a, t).u .

This implies Nelson’s pairing condition for commands k:

wp.k.u = wp.k.' ∧ wlp.k.u .

An important auxiliary concept is the guard of a command:

grd.(a, t) =df wp.(a, t).0 = t + a .

It characterises the set of states that, if non-diverging, allow a transition under
a. A command is called total if its guard equals top. The above formula links
Parnas’s condition [21] on termination constraints with totality:

grd.(a, t) = ' ⇔ t ≤ a .

We will shortly see that this condition characterises exactly the feasible nor-
mal designs. Nelson remarks that totality of command k is also equivalent to
Dijkstra’s law wp.k.0 = 0 of the excluded miracle.

The basic non-iterative commands are defined as

fail =df (0,') , skip =df (1,') , loop =df (0, 0) ,
(a, t) � (b, u) =df (a + b, t ∧ u) , (a, t) ; (b, u) =df (a · b, t ∧ [[a]]u) .

Here t ∧ [[a]]u characterises those states for which a is guaranteed to terminate
and which under a only lead to guaranteed termination states of b.

The commands form a left semiring, i.e., satisfy all semiring laws except for
the right annihilation law for the zero element fail.

Theorem 5.1. The structure COM(S) =df (COM(S), �, fail, ;, skip) is an idem-
potent left semiring. The associated natural order on COM(S) is

(a, t) ≤ (b, u) ⇔ a ≤ b ∧ t ≥ u .

The proof, which is a mere transliteration of the corresponding one in [18] for
the test semiring case, can be found in [12]. It is essential that semiring S be a
semiring and not only a left semiring. The natural order between commands is
used in [10]. Its drawback is that it cannot be used as the approximation order
for fixed-point semantics; for details see again [18].

By standard order theory, if S is a complete lattice with cond(S) as a complete
sublattice then COM(S) is again a complete lattice with, for arbitrary I,

%{(ai, pi) : i ∈ I} = (%{ai : i ∈ I},�{ai : i ∈ I}).
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Likewise, chaos =df (', 0) is the greatest element of COM(S), whereas havoc
=df (',') represents the most nondeterministic everywhere terminating pro-
gram.

As in [13] we say that command k is (H4) or feasible iff k ; loop = loop. One
calculates, using [[a]]0 = a and semiring properties,

(a, t) ; loop = (a · 0, t ∧ [[a]]0) = (0, t ∧ a) .

Corollary 5.2. Command (a, t) is feasible iff t ≤ a.

Therefore loop, skip, havoc and chaos are feasible, whereas fail is not. Moreover,
� and ; preserve feasibility.

6 Refinement

Let us now look more closely at the natural order induced on the commands by
the left semiring structure. By antitony of box we obtain for commands k, l

k ≤ l ⇒ wlp.k ≥ wlp.l ∧ wp.k ≥ wp.l ,

where on the right hand side ≥ is the pointwise order between condition trans-
formers. The second conjunct is the converse of the usual refinement relation.
For it we calculate

wp.(a, t).v ≥ wp.(b, u).v
⇔ {[ definition ]}

t ∧ [[a]]v ≥ u ∧ [[b]]v
⇔ {[ universal property of meet ]}

t ≥ u ∧ [[b]]v ∧ [[a]]v ≥ u ∧ [[b]]v
⇔ {[ shunting in right conjunct ]}

t ≥ u ∧ [[b]]v ∧ 〈〈b〉〉v ≥ u ∧ 〈〈a〉〉v
⇔ {[ diamond law ]}

t ≥ u ∧ [[b]]v ∧ 〈〈b〉〉v ≥ 〈〈u ∧ a〉〉v
⇐ {[ isotony ]}

t ≥ u ∧ b ≥ u ∧ a .

We use the latter formula as the refinement relation between commands:

(a, t) ! (b, u) ⇔df u ≤ t ∧ u ∧ a ≤ b .

Due to our generalised setting we only have k ! l ⇒ wp.k ≥ wp.l. Equiv-
alence holds if the underlying modal condition semiring S is extensional, i.e, if
〈〈a〉〉 ≤ 〈〈b〉〉 ⇒ a ≤ b (the converse implication holds by isotony). For instance,
REL(M) is extensional, whereas TRC(A) is not.

Unlike≤ the relation! is only a pre-order with associated equivalence relation

k ≡ l ⇔df k ! l ∧ l ! k .
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Componentwise, it works out to (a, t) ≡ (b, u) ⇔ t = u ∧ t∧a ≤ b ∧ t∧b ≤
a, which further simplifies to

(a, t) ≡ (b, u) ⇔ t = u ∧ t ∧ a = t ∧ b . (eqc)

This agrees with the behaviour of designs described in [13]. For instance,

(t ∧ a, t) ≡ (a, t) ≡ (t + a, t) .

Our relations between commands are put into perspective by

Lemma 6.1.

1. k ≤ l ⇒ k ! l ⇒ wp.k ≥ wp.l.
2. k ! l ⇔ k � l ≡ l.

Proof.

1. (a, t) ≤ (b, u) ⇔ u ≤ t ∧ a ≤ b ⇒ u ≤ t ∧ u ∧ a ≤ b ⇔ (a, t) ! (b, u).
The second implication has been shown above.

2. By (eqc) and lattice algebra, (a, t)�(b, u) ≡ (b, u) ⇔ (a+b, t∧u) ≡ (b, u) ⇔
t ∧ u = u ∧ u ∧ (a + b) = u ∧ b ⇔ u ≤ t ∧ u ∧ a + u ∧ b = u ∧ b ⇔
u ≤ t ∧ u ∧ a ≤ u ∧ b ⇔ u ≤ t ∧ u ∧ a ≤ b ⇔ (a, t) ! (b, u). �%

This lemma explains our choice for the direction of the ! relation; in many texts
on refinement it is used the other way around.

For calculations to work smoothly the following property is important:

Lemma 6.2.

1. The operations � and ; on commands are !-isotone.
2. The equivalence ≡ is a congruence w.r.t. � and ;.

Proof.

1. Assume (a, t) ! (b, u), i.e., u ≤ t ∧ u ∧ a ≤ b.
For � we obtain from the definitions and the universal property of meet

(a, t) � (c, v) ! (b, u) � (c, v) ⇔
u ∧ v ≤ t ∧ v ∧ u ∧ v ∧ a ≤ b + c ∧ u ∧ v ∧ c ≤ b + c ,

and by isotony all three conjuncts are implied by the assumption. Commu-
tativity of � shows !-isotony in its second argument.

For the first argument of ; we obtain from the definitions and the universal
property of meet

(a, t) ; (c, v) ! (b, u) ; (c, v) ⇔
u ∧ [[b]]v ≤ t ∧ u ∧ [[b]]v ≤ [[a]]v ∧ u ∧ [[b]]v ∧ a · c ≤ b · c .

The first conjunct is implied by the assumption u ≤ t. The second one
transforms by shunting into [[b]]v ≤ u + [[a]]v = [[u ∧ a]]v, which follows from
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the assumption u ∧ a ≤ b and antitony of box. The third one transforms by
Lemma 3.2 into [[b]]v ∧ (u ∧ a) · c ≤ b · c, which follows again from u ∧ a ≤ b
and isotony of composition.

For the second argument of ; we obtain from the definitions

(c, v) ; (a, t) ! (c, v) ; (b, u) ⇔ v ∧ [[c]]u ≤ v ∧ [[c]]t ∧ v ∧ [[c]]u ∧ c · a ≤ c · b .

The first conjunct is implied by the assumption u ≤ t and isotony of [[c]].
The second one follows by shunting from c · a ≤ c · b + (c · u) which follows
from the assumption a ≤ b + u and isotony of composition and domain.

2. Immediate from 1. �%
Finally we look at the lattice structure of commands under !. Note that join
and meet can also be defined for pre-orders; they enjoy all the usual properties
except that they are unique only up to the associated equivalence relation.

Lemma 6.3.

1. The join of commands (a, t) and (b, u) w.r.t. ! is

(a, t) % (b, u) = (a + b, t ∧ u) = (a, t) � (b, u) .

2. If the meet a∧ b exists then so does the meet of (a, t) and (b, u) w.r.t. !, viz.

(a, t) ∧ (b, u) = (a ∧ b + t ∧ b + u ∧ a + t ∧ u, t + u) .

Proof.

1. We use indirect equality. For all (c, v) we have
(a, t) ! (c, v) ∧ (b, u) ! (c, v)

⇔ {[ definition ]}
v ≤ t ∧ v ∧ a ≤ c ∧ v ≤ u ∧ v ∧ b ≤ c

⇔ {[ lattice algebra ]}
v ≤ t ∧ u ∧ v ∧ a + v ∧ b ≤ c

⇔ {[ distributivity ]}
v ≤ t ∧ u ∧ v ∧ (a + b) ≤ c

⇔ {[ definition ]}
(a + b, t ∧ u) ! (c, v) .

2. (c, v) ! (a, t) ∧ (c, v) ! (b, u)
⇔ {[ definition ]}

t ≤ v ∧ t ∧ c ≤ a ∧ u ≤ v ∧ u ∧ c ≤ b

⇔ {[ lattice algebra, shunting ]}
t + u ≤ v ∧ c ≤ t + a ∧ c ≤ u + b

⇔ {[ lattice algebra ]}
t + u ≤ v ∧ c ≤ (t + a) ∧ (u + b) ,

so that (a, t) ∧ (b, u) = ((t + a) ∧ (u + b), t + u). The form of the expression
given in the statement of the lemma results by Boolean algebra. �%

In the remainder we will work with the quotient set C(S) = COM(S)/≡ most of
the time, but still abbreviate the classes [(a, t)]≡ by their representatives (a, t).



246 W. Guttmann and B. Möller

7 Conditionals

To round off the picture, we define a number of conditional commands in terms
of the basic ones:

t→ k =df (t ∧ 1,') ; k , k � t � l =df (t → k) � (t → l) ,
assert t =df skip � t � loop , assume t =df skip � t � chaos .

In particular, these commands are again !-isotone so that ≡ is a congruence
w.r.t. them as well. Componentwise, the first two definitions work out to

t → (b, u) = (t ∧ b, t + u) ,
(b, u) � t � (c, v) = (b � t � c, u � t � v) .

For the latter one calculates by Boolean algebra

(t + u) ∧ (t + v) = t ∧ v + t ∧ u + u ∧ v = t ∧ v + t ∧ u + t ∧ u ∧ v + t ∧ u ∧ v
= t ∧ u + t ∧ v = u � t � v .

Let us prove two laws for the two-sided conditional. As an abbreviation, let
p =df (t ∧ 1,'), q =df (t ∧ 1,'), and observe that p � q = skip. Then, first,

k � t � k =
(defs.)

p ; k � q ; k =
(dist.)

(p � q) ; k =
(above)

skip ; k =
(neut.)

k .

Second,

(k� t� l) ;m =
(defs.)

(p ;k � q ; l) ;m =
(dist.)

p ;k ;m� q ; l ;m =
(defs.)

(k ;m)� t� (l ;m) .

From these two laws it follows that k � t � l preserves feasibility, whereas t → k
does this only in the uninteresting case t = '. Therefore also assert t and assume t
are feasible.

Moreover, the conditional operators distribute over choice, since

(t → k) � (t → l) =
(defs.)

p ; k � p ; l =
(dist.)

p ; (k � l) =
(defs.)

t → (k � l) ,

and therefore

(k � t � l) � (m � t � n) =
(defs.)

(t → k) � (t → l) � (t → m) � (t → n)

=
(above)

(t → (k � m)) � (t → (l � n)) =
(defs.)

(k � m) � t � (l � n) .

Finally, we prove a more specialised property that we will need later on.

Lemma 7.1. (a, t) ; (b, u)�z � (c, v) = (z ∧a, t�z �') ;(b, u)�(z ∧c,'�z �v).

Proof. First, for arbitrary commands k, l and m,

k ; l � z � m

= {[ Theorem 5.1 ]}
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(k ; l � fail) � z � (fail � m)
= {[ conditional distributes over choice ]}

(k ; l � z � fail) � (fail � z � m)
= {[ Theorem 5.1 ]}

(k ; l � z � fail ; l) � (fail � z � m)
= {[ composition distributes over conditional ]}

(k � z � fail) ; l � (fail � z � m).

Componentwise, we therefore have

(a, t) ; (b, u) � z � (c, v)
= {[ above calculation ]}

((a, t) � z � (0,')) ; (b, u) � ((0,') � z � (c, v))
= {[ command conditional ]}

(a � z � 0, t � z �') ; (b, u) � (0 � z � c,'� z � v)
= {[ definition of conditional ]}

(z ∧ a, t � z �') ; (b, u) � (z ∧ c,'� z � v). �%

8 Feasible Normal Designs and Demonic Semantics

We have already seen that command (a, t) is feasible if and only if t ≤ a and thus
define the set of feasible commands as F(S) = {(a, t)|(a, t) ∈ C(S) ∧ t ≤ a}.
The aim of the present section is to establish a correspondence between feasible
commands and elements of the underlying semiring S. It will be used to define
the demonic operators on S and is an abstract version of the mappings Id and
Hd on relations defined in [11], and given by

E : F(S) → S , D : S → F(S) ,
E((a, t)) =df t ∧ a , D(a) =df (a, a) .

We will abbreviate E((a, t)) to E(a, t). This function, which would make sense
even for arbitrary pairs, describes the demonic view of (a, t) that discards all
input states of a for which both termination and nontermination may occur,
i.e., all those characterised by t ∧ a. For the resulting semiring element, no
extra termination information is needed; this is reflected in the definition of D.

Lemma 8.1. E and D are inverse to each other, in one case up to ≡.

Proof. By Lemma 4.1(7), feasibility, and refinement ordering,

D(E(a, t)) = D(t ∧ a) = (t ∧ a, (t ∧ a)) = (t ∧ a, t ∧ a) = (t ∧ a, t) ≡ (a, t).

Conversely, by (cd1) we have E(D(a)) = E(a, a) = a ∧ a = a. �%
We will give a demonic ordering and demonic operations on S for modelling
total correctness. In contrast to [8], where such an ordering and operations are
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introduced by new definitions, we can derive these using the correspondence
from Lemma 8.1. The demonic refinement ordering is

a ! b ⇔df D(a) ! D(b) ⇔ (a, a) ! (b, b) ⇔ b ≤ a ∧ b ∧ a ≤ b.

By (eqc) and (cd1) ! is antisymmetric, i.e., a partial order. Thus, by Lemma 8.1,
the mappings E and D are order isomorphisms between (F(S),!) and (S,!).
Since chaos is the greatest element of COM(S), and therefore also of F(S), the
!-greatest element of S is E(chaos) = E(', 0) = 0. In general, however, there
is no !-smallest element, since the corresponding least element fail of COM(S)
is not feasible.

The demonic composition is

a � b =df E(D(a) ; D(b)) = E((a, a) ; (b, b)) = E(a · b, a ∧ [[a]]b)
= a ∧ [[a]]b ∧ a · b = [[a]]b ∧ a · b,

since a · b ≤ (a · b) ≤ a by (cd1) and Lemma 4.1(10). The unit skip of COM(S)
is feasible, thus E(skip) = E(1,') = 1 is also the unit of demonic composition.

The demonic choice (which coincides with the !-join) is

a % b =df E(D(a) � D(b)) = E((a, a) � (b, b)) = E(a + b, a ∧ b)
= a ∧ b ∧ (a + b).

The demonic meet, whenever it exists, is, by Lemma 6.3.2,

a � b =df E(D(a) ∧ D(b)) = E((a, a) ∧ (b, b))
= E(a ∧ b + a ∧ b + b ∧ a, a + b)
= (a + b) ∧ (a ∧ b + a ∧ b + b ∧ a)
= a ∧ b + a ∧ b + b ∧ a,

since a∧ b+ a∧ b+ b∧a ≤ a+ b+ a = a+ b ≤ a+ b by (cd1). The necessary
and sufficient condition for its existence is the feasibility of D(a) ∧ D(b), hence,

D(a) ∧ D(b) ∈ F(S)
⇔ {[ above calculation, feasibility ]}

a + b ≤ (a ∧ b + a ∧ b + b ∧ a)
⇔ {[ Lemma 4.1(2,7) ]}

a + b ≤ (a ∧ b) + a ∧ b + b ∧ a
⇔ {[ shunting and de Morgan ]}

(a + b) ∧ (a + b) ∧ (b + a) ≤ (a ∧ b)
⇔ {[ Boolean algebra ]}

a ∧ b ≤ (a ∧ b),

which is equivalent to (a ∧ b) = a ∧ b.
Finally, the demonic conditional is

E(D(a) � t � D(b)) = E((a, a) � t � (b, b)) = E(a � t � b, a � t � b)
= (a � t � b) ∧ (a � t � b) = (a ∧ a) � t � (b ∧ b)
= a � t � b
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by Boolean algebra and (cd1). Hence we do not introduce a new notation for it.
The solutions to demonic recursions are also derived according to the order

isomorphism and the following general lemma.

Lemma 8.2. 1. Let (A,≤) and (B,!) be partial orders, h : A → B an order
isomorphism, f : A → A, and g : B → B such that h ◦ f = g ◦ h.
Then f is order preserving if and only if g is order preserving.

2. Furthermore, let f be order preserving and f◦ a fixed point of f .
Then h(f◦) is a fixed point of g.

3. Furthermore, let f⊥ be the least fixed point of f , and f� the greatest.
Then h(f⊥) is the least fixed point of g, and h(f�) the greatest.

Proof. 1. Assume x ≤ y. Then

f(x) ≤ f(y) ⇔ h(f(x)) ! h(f(y)) ⇔ g(h(x)) ! g(h(y)) ,

which, together with surjectivity of h shows the claim.
2. g(h(f◦)) = h(f(f◦)) = h(f◦).
3. h(f⊥) and h(f�) are fixed points of g by 2. Let g◦ be a fixed point of g.

Swapping the partial orders, 2. states that h−1(g◦) is a fixed point of f .
Hence, f⊥≤h−1(g◦)≤f�. By order isomorphism, h(f⊥)!g◦!h(f�). �%

Corollary 8.3. Let f : S → S be !-preserving. Then the least fixed point of f
with respect to ! is μ	(f) = E(μ	(D ◦ f ◦ E)). Analogously, the greatest fixed
point is ν	(f) = E(ν	(D ◦ f ◦ E)).

9 The Kleene Algebra of Commands

A Kleene algebra is a structure (K, ∗) such that K is an idempotent semiring
and the star ∗ satisfies the unfold and induction laws

1 + a · a∗ ≤ a∗ 1 + a∗ · a ≤ a∗

b + a · c ≤ c ⇒ a∗ · b ≤ c b + c · a ≤ c ⇒ b · a∗ ≤ c

for a, b, c ∈ K [14]. Hence a∗ ·b is the least fixed point of the mapping λx.a ·x+b.
The following Lemma proves a generalisation to condition semirings of the

left induction law from Kleene algebra.

Lemma 9.1. v ∧ (b + c · a) ≤ c ⇒ v ∧ b · a∗ ≤ c.

Proof. By Boolean algebra and Lemma 3.2, v ∧ (b + c · a) = v ∧ b + v ∧ (c · a) =
v∧b+(v∧c) ·a = v∧b+(v∧(c+v)) ·a = v∧b+v∧((c+v) ·a) = v∧(b+(c+v) ·a).
Hence, by the above calculation, shunting, Kleene star induction and shunting
again,

v ∧ (b + c · a) ≤ c ⇔ v ∧ (b + (c + v) · a) ≤ c ⇔ b + (c + v) · a ≤ c + v
⇒ b · a∗ ≤ c + v ⇔ v ∧ b · a∗ ≤ c . �%
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Lemma 9.2. 1. v ≤ [[a]]v ⇔ a · v ≤ v.
2. v ≤ t ∧ [[a]]v ⇒ v ≤ [[a∗]]t.

Proof. 1. By the definition of box, Boolean algebra, and (GCc),

v ≤ [[a]]v ⇔ v ≤ (a · v) ⇔ (a · v) ≤ v ⇔ a · v ≤ v.

2. v ≤ t ∧ [[a]]v
⇔ {[ Boolean algebra ]}

v ≤ t ∧ v ≤ [[a]]v
⇔ {[ Boolean algebra and 1. ]}

t ≤ v ∧ a · v ≤ v

⇔ {[ Boolean algebra ]}
t + a · v ≤ v

⇒ {[ Kleene star induction ]}
a∗ · t ≤ v

⇔ {[ (GCc) ]}
(a∗ · t) ≤ v

⇔ {[ Boolean algebra and definition of box ]}
v ≤ (a∗ · t) = [[a∗]]t.

�%
We will now lift the Kleene star from the underlying semiring S to the quotient
command semiring C(S). This is needed to calculate the least fixed point of loops.
Since the right annihilation law fails to hold in C(S) the resulting structure is
called a weak Kleene algebra [18].

Theorem 9.3. (a, t)∗ = (a∗, [[a∗]]t).

Proof. We first note that if two functions agree in their values up to ≡ then
their !-least and !-greatest fixed points are ≡-equivalent, too. So the star ax-
ioms characterise the star operation uniquely up to ≡ in COM(S). Therefore, to
prove the claim it suffices to show the star axioms for (a∗, [[a∗]]t) using arbitrary
representatives of the ≡-classes involved.

1. By command operations, properties of box, and the Kleene unfold axiom,

skip � (a, t) ; (a∗, [[a∗]]t) = (1,') � (a · a∗, t ∧ [[a]][[a∗]]t)
= (1 + a · a∗, [[1]]t ∧ [[a · a∗]]t) = (a∗, [[1 + a · a∗]]t) = (a∗, [[a∗]]t).

2. For similar reasons,

skip � (a∗, [[a∗]]t) ; (a, t) = (1,') � (a∗ · a, [[a∗]]t ∧ [[a∗]]t)
= (1 + a∗ · a, [[a∗]]t) = (a∗, [[a∗]]t).

3. By command operations and ordering,

(b, u) � (a, t) ; (c, v) ! (c, v) ⇔ (b, u) � (a · c, t ∧ [[a]]v) ! (c, v)
⇔ (b + a · c, u ∧ t ∧ [[a]]v) ! (c, v)
⇔ v ≤ t ∧ u ∧ [[a]]v ∧ v ∧ (b + a · c) ≤ c.
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By Lemma 9.2.1, a · v ≤ v, hence b + a · (c + v) = b + a · c + a · v ≤ c + v. By
Kleene star induction, a∗ ·b ≤ c+v, thus v∧a∗ ·b ≤ c by shunting. Moreover,
v ≤ [[a∗]](t ∧ u) by Lemma 9.2.2.
By command operations, properties of box, and the last two facts,

(a∗, [[a∗]]t) ; (b, u) = (a∗ · b, [[a∗]]t ∧ [[a∗]]u) = (a∗ · b, [[a∗]](t ∧ u)) ! (c, v).

4. By command operations and ordering,

(b, u) � (c, v) ; (a, t) ! (c, v) ⇔ (b, u) � (c · a, v ∧ [[c]]t) ! (c, v)
⇔ (b + c · a, u ∧ v ∧ [[c]]t) ! (c, v)
⇔ v ≤ u ∧ v ≤ [[c]]t ∧ v ∧ (b + c · a) ≤ c.

By Lemma 9.1, v ∧ b · a∗ ≤ c. Moreover, v ≤ [[c]]t ≤ [[v ∧ b · a∗]]t = v + [[b · a∗]]t
by box properties. By v ≤ u and shunting, v ≤ u ∧ [[b · a∗]]t.
Together, by command operations, and properties of box,

(b, u) ; (a∗, [[a∗]]t) = (b · a∗, u ∧ [[b]][[a∗]]t) = (b · a∗, u ∧ [[b · a∗]]t) ! (c, v).
�%

Corollary 9.4. Since the designs of UTP are commands over relations, we have
a weak Kleene algebra of designs where (P � Q)∗ = Q∗; P � Q∗.

10 The Omega Algebra of Commands

A weak omega algebra is a structure (K, ω) such that K is a weak Kleene algebra
and the omega ω satisfies the unfold and co-induction laws

aω = a · aω

c ≤ a · c + b ⇒ c ≤ aω + a∗ · b
for a, b, c ∈ K [16]. It follows that aω + a∗ · b is the greatest fixed point of the
mapping λx.a · x + b.

In contrast to this definition, an omega algebra requires K to be a Kleene
algebra but weakens the unfold axiom to aω ≤ a · aω [4]. The reverse inequality
need not hold in absence of the right annihilation law [16].

For the greatest fixed point of loops, we will now lift the omega operator
from the underlying semiring S to the quotient command semiring C(S). To
calculate the weak omega operator we need the analogue of the convergence
algebra defined in [18]. The convergence operation � : S → cond(S) satisfies
the unfold and co-induction laws

[[a]](�a) ≤ �a

t ∧ [[a]]u ≤ u ⇒ �a ∧ [[a∗]]t ≤ u

The condition �a characterises the states from which no infinite transition paths
emerge. The following lemma states a few properties of convergence.
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Lemma 10.1. 1. �a ∧ [[a∗]]t is the least (pre-)fixed point of λu.t ∧ [[a]]u.
In particular, �a is the least (pre-)fixed point of [[a]].

2. a ≤ �a ≤ aω and hence �a ∧ aω = 0.
3. � is antitone.
4. [[a∗]](�a) = [[a · a∗]](�a) = [[a]](�a) = �a.

Proof. 1. By box properties, and the Kleene star and convergence unfold laws,
t ∧ [[a]](�a ∧ [[a∗]]t) = t ∧ [[a]](�a) ∧ [[a]][[a∗]]t ≤ �a ∧ [[1 + a · a∗]]t = �a ∧ [[a∗]]t.
Hence, by the co-induction axiom, �a ∧ [[a∗]]t is the least pre-fixed point of
λu.t ∧ [[a]]u. Then, it is also the least fixed point [8].
Choose t = ' for the special case, using [[a∗]]' = '.

2. By condition semiring properties, the definition of box, and the unfold law,

a = (a · ') ≤ (a ·�a) = [[a]](�a) = �a.

By definition of box, Lemma 4.1(8), and the omega axioms,

[[a]]aω = (a · aω) ≤ (a · aω) = aω.

Hence, aω is a fixed point of [[a]], and �a ≤ aω by 1.
3. By antitony of box and 1, a ≤ b ⇒ [[b]] ≤ [[a]] ⇒ �b ≤ �a.
4. By box properties and 1, [[1]](�a) = �a = [[a]](�a). Moreover, by star and

box properties,

[[a]][[a∗]](�a) = [[a · a∗]](�a) = [[a∗ · a]](�a) = [[a∗]][[a]](�a) = [[a∗]](�a) ,

so that [[a∗]](�a) is a fixed point of [[a]]. The remaining inequalities follow by
antitony of the box operator. �%

In the special case of REL(M), �a = aω can be proved by Corollary 4.3.

Theorem 10.2. (a, t)ω = (aω, �a ∧ [[a∗]]t) ≡ (0, �a ∧ [[a∗]]t).

Proof. Using the same observation as in the proof of Theorem 9.3, it suffices
to show that (aω, �a ∧ [[a∗]]t) satisfies the weak omega axioms. The claimed
≡-relation then follows by Lemma 10.1.2.

1. By command operations, the fixed-point property of aω and Lemma 10.1.1,

(a, t) ; (aω , �a ∧ [[a∗]]t) = (a · aω, t ∧ [[a]](�a ∧ [[a∗]]t)) = (aω, �a ∧ [[a∗]]t) .

2. Assume

(c, v) ! (a, t) ; (c, v) � (b, u) = (a · c, t ∧ [[a]]v) � (b, u) = (a · c + b, t ∧ [[a]]v ∧ u),

which is equivalent to w ≤ v ∧ w ∧ c ≤ a · c + b, where w =df t ∧ u ∧ [[a]]v.
We have to show

(c, v) ! (aω, �a ∧ [[a∗]]t) � (a∗, [[a∗]]t) ; (b, u)
= (aω + a∗ · b, �a ∧ [[a∗]]t ∧ [[a∗]]t ∧ [[a∗]]u)
= (aω + a∗ · b, �a ∧ [[a∗]](t ∧ u)) ,
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which by definitions and shunting is equivalent to x ≤ v ∧ c ≤ aω+a∗ ·b+x,
where x =df �a ∧ [[a∗]](t ∧ u).

The first conjunct follows from the first assumption by convergence co-
induction. For the second one transforms the second assumption by shunting
into c ≤ a · c + b + w. By omega co-induction c ≤ aω + a∗ · b + a∗ · w, so we
are done if we can show a∗ · w ≤ x.
We have a∗ · w ≤ (a∗ · w) = [[a∗]]w, so that it suffices to show [[a∗]]w ≤ x,
equivalently x ≤ [[a∗]]w. Now, by box and star properties,

x ≤ [[a∗]]w ⇔ x ≤ [[a∗]](t ∧ u) ∧ [[a∗]][[a]]v
⇔ x ≤ [[a∗]](t ∧ u) ∧ x ≤ [[a∗]]v .

The first conjunct holds by definition of x. For the second one, since x ≤ v
as shown above, it suffices by isotony of [[a∗]] to show x ≤ [[a∗]]x. Now, by
disjunctivity of [[a∗]], Lemma 10.1.4 and star properties,

[[a∗]]x = [[a∗]](�a ∧ [[a∗]](t ∧ u)) = [[a∗]](�a) ∧ [[a∗]][[a∗]](t ∧ u)
= �a ∧ [[a∗]][[a∗]](t ∧ u) = �a ∧ [[a∗]](t ∧ u) = x . �%

Corollary 10.3. Again, since the designs of UTP are commands over relations,
we have a weak omega algebra of designs where (P � Q)ω = Qω ∨Q∗; P � false.

11 The Demonic While Loop

The Kleene and omega algebraic properties of commands finally enable the cal-
culation of the least and greatest fixed points of the function that describes the
demonic while loop.

Theorem 11.1.

1. μ	(λx.a � x � t � 1) = [[(t ∧ a)∗]](t + a) ∧ (t ∧ a)∗ · (t ∧ 1).
2. ν	(λx.a � x � t � 1) = �(t ∧ a) ∧ μ	(λx.a � x � t � 1).

Proof. We calculate the fixed points according to Corollary 8.3.

1. For the least fixed point,

μ	(λx.a � x � t � 1)
= {[ Corollary 8.3 ]}

E(μ	(λ(b, u).D(a � E(b, u) � t � 1)))
= {[ demonic conditional: D(a � t � b) = D(a) � t � D(b) ]}

E(μ	(λ(b, u).D(a � E(b, u)) � t � D(1)))
= {[ demonic composition: D(a � b) = D(a) ; D(b) ]}

E(μ	(λ(b, u).D(a) ; D(E(b, u)) � t � D(E(skip))))
= {[ Lemma 8.1 ]}

E(μ	(λ(b, u).(a, a) ; (b, u) � t � (1,')))
= {[ Lemma 7.1 ]}
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E(μ	(λ(b, u).(t ∧ a, a � t �') ; (b, u) � (t ∧ 1,')))
= {[ definition of conditional and Boolean algebra ]}

E(μ	(λ(b, u).(t ∧ a, t + a) ; (b, u) � (t ∧ 1,')))
= {[ a∗ · b is the least fixed point of (λx.a · x + b) ]}

E((t ∧ a, t + a)∗ ; (t ∧ 1,'))
= {[ Theorem 9.3 ]}

E(((t ∧ a)∗, [[(t ∧ a)∗]](t + a)) ; (t ∧ 1,'))
= {[ command composition ]}

E((t ∧ a)∗ · (t ∧ 1), [[(t ∧ a)∗]](t + a) ∧ [[(t ∧ a)∗]]')
= {[ box properties and definition of E ]}

[[(t ∧ a)∗]](t + a) ∧ (t ∧ a)∗ · (t ∧ 1).

2. For the greatest fixed point,

ν	(λx.a � x � t � 1)
= {[ calculation as in 1. ]}

E(ν	(λ(b, u).(t ∧ a, t + a) ; (b, u) � (t ∧ 1,')))
= {[ a∗ · b + aω is the greatest fixed point of (λx.a · x + b) ]}

E((t ∧ a, t + a)∗ ; (t ∧ 1,') � (t ∧ a, t + a)ω)
= {[ Theorem 10.2 and calculation as in 1. ]}

E(((t ∧ a)∗ · (t ∧ 1), [[(t ∧ a)∗]](t + a))�
(0, �(t ∧ a) ∧ [[(t ∧ a)∗]](t + a)))

= {[ command disjunction ]}
E((t ∧ a)∗ · (t ∧ 1), �(t ∧ a) ∧ [[(t ∧ a)∗]](t + a))

= {[ 1. ]}
�(t ∧ a) ∧ μ	(λx.a � x � t � 1). �%

12 Conclusion

The treatment has shown that almost all of the standard theory of normal designs
carries over to the general case. One can even prove a generalisation of the fixed
point theorem 3.1.6 of [13] that allows an alternative derivation of the omega
operator for commands. It should be noted that the operations of complement
and meet are not required for all semiring elements but only on the conditions.

By defining refinement as in Section 6 we committed ourselves to total correct-
ness. The branch of general correctness, exemplified by the normal prescriptions
of [10], can be explored by taking the natural order of commands given in The-
orem 5.1 instead. Since then, however, the connection starting with Lemma 8.1
no longer holds, the loop semantics cannot be calculated in the same way. An
alternative treatment using the Egli-Milner order is given in [18]. The treatment
of conditions as right ideals has been an interesting exercise but is not as smooth
as using tests, not least because of its lack of symmetry.
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Finally, we would like to mention that the command semiring can actually be
made into a modal semiring itself, so that the general soundness and complete-
ness proof for the associated Hoare logic can directly be applied to commands
(see [17] for details).

It is to be hoped that the generalised results will be of use for handling trace
semantics and other semantical models by taking algebras like TRC(A) and their
properties into account, thus dealing with healthiness conditions such as (R1)–
(R3) of UTP in a purely algebraic fashion. The presented method could also serve
as a model for the extension by parameters that describe further observations
as proposed in [13].

Acknowledgement. We are grateful to Peter Höfner, Kim Solin and the anony-
mous referees for helpful discussions and remarks.
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